화학공학소재연구정보센터
Powder Technology, Vol.110, No.3, 210-221, 2000
Numerical study of cluster formation in a gas-particle circulating fluidized bed
Simulations with two-way coupling are performed for two-dimensional gas-solid flow in a circulating fluidized bed with a total solids concentration of 3% in the riser. The motion of particles is treated by a Lagrangian approach, and particles are assumed to interact through binary, instantaneous, non-frontal, and inelastic collisions with friction. The model for the interstitial gas phase is based on the Navier-Stokes equations for two-phase flow with fluid turbulence calculated by using LES. Several porosity functions exist in the literature relating the drag force for a particle in a cloud to the drag force on an isolated particle. We have studied the influences of this porosity function, observing large differences in the local flow structure. The fluctuating gas-solid motion has been investigated showing a strong anisotropic flow behaviour, which is similar to experimental findings. The instabilities in these flows are strongly linked to the non-linear drag function due to the group effect of particles in a cloud. The collision parameters have been found to have an important influence on the cluster structures.