화학공학소재연구정보센터
Polymer Engineering and Science, Vol.38, No.1, 177-185, 1998
Plastification or melting : A critical process for free radical grafting in screw extruders
This paper shows for the first time that when a monomer is to be grafted onto a polymer backbone by a free radical mechanism in a twin screw extruder, the grafting process occurs mainly, if not exclusively, in the plastification (melting) zone. For this purpose, the free radical grafting of glycidyl methacrylate (GMA) onto polypropylene (PP) and polyethylene (PE) was chosen as model systems. A co-rotating self-wiping twin screw extruder of type Werner Pfleiderer ZSK-30 (L = 42D) was used to process the grafting. Owing to its modular character in terms of barrel arrangement, screw element combination and barrel temperature, the position and length of the plastification zone can be adjusted virtually at will. This allowed us to follow up the grafting not only at the die exit, but also in the plastification zone under different grafting conditions. Our results clearly show that it is in the plastification (melting) zone that the entire grafting process occurs. This length is usually very short in a co-rotating twin screw extruder like ours. Under the grafting conditions, it varied from 1D to 5D. Thus, any relevant analysis or model of a free radical grafting process carried out in a screw extruder must be based on detailed information generated not only at the die exit, but also and most importantly in the plastification zone. Otherwise, it may lead to incomplete and/or wrong conclusions.