Polymer Engineering and Science, Vol.36, No.3, 322-335, 1996
Solidification of Thermoviscoelastic Melts .3. Effects of Mold Surface-Temperature Differences on Warpage and Residual-Stresses
The solidification of a molten layer of amorphous thermoplastic between cooled parallel plates is used to model the mechanics of part warpage in the injection-molding process. Flow effects are neglected, and a thermorheologically simple thermoviscoelastic material model is assumed. The model allows material to be added to fill the space created by the pressure applied during solidification so that this model can be used to assess packing-pressure effects in injection molding. Parametric results are presented on the effects of the mold temperatures and the packing pressure-the pressure applied during solidification to counteract the effects of volumetric shrinkage of the thermoplastic-on the in-plane and through-thickness shrinkages, on warpage, and on residual stresses in plaque-like geometries. The packing pressure is shown to have a significant effect on part warpage. While the results are presented in terms of normalized variables based on the properties of bisphenol-A polycarbonate, they can be interpreted for other amorphous thermoplastics, such as modified polyphenylene oxide, polyetherimide, and acrylonitrile-butadiene-styrene.