화학공학소재연구정보센터
Polymer Engineering and Science, Vol.36, No.1, 23-33, 1996
Shear and Extensional Flow of a Thermotropic Liquid-Crystalline Polymer
The flow of a thermotropic liquid crystalline polymer (unfilled and glass fiber filled) was studied using a capillary rheometer and an instrumented injection molding machine. Despite different thermal histories, the techniques gave similar results. From 330 to 350 degrees C, viscosity was independent of temperature. At 340 degrees C, where most measurements were carried out, pronounced shear-thinning occurred and the shear flow curves were nonlinear, the power law exponent decreasing from 0.51 at a shear rate of 10 s(-1) to 0.35 at 10(4) s(-1). A previously reported model was used to derive elongational flow curves from die entry pressure data. Because of the nonlinearity of the flow curves, quadratic log-stress vs. log-strain rate plots were needed to model behavior over the strain rate region studied. The elongational flow curves were similar in shape to the shear flow curves, with an effective Trouton ratio of 30. Despite orientation and structure present in the melt, the extensional viscosities and Trouton ratios were within the range found with normal thermoplastic melts. The results suggest that extensional flow may be inhomogeneous, the flowing units possibly being partially ordered domains.