Polymer Engineering and Science, Vol.35, No.15, 1213-1221, 1995
Numerical-Simulation of Fluid-Flow and Heat-Transfer in Twin-Screw Extruders for Non-Newtonian Materials
A new simplified approach has been proposed for the numerical simulation of the thermal transport in corotating, tangential, and self-wiping twin-screw extruders. It is assumed that the flow domain in a twin-screw extruder can be divided into (i) the translation region (T-region), which represents a flow similar to that in a single-screw channel and (ii) the intermeshing region (I-region), which is located between the two screws. The two regions are simulated separately and then coupled for each screw section to model the overall transport in tangential and self-wiping twin-screw extruders. A finite difference method is employed for the developing flow and temperature fields in the T-region, in order to minimize the computing effort, while a finite element method is employed for determining the interchannel flow mixing and the thermal transport in the I-region. Results are obtained in terms of temperature, velocity, and pressure variations along the screw channels and mixing between the two screws.
Keywords:MASS-TRANSFER;EXTRUSION