Polymer Engineering and Science, Vol.35, No.1, 92-99, 1995
Rheooptical Behavior of Binary Polymer Blends - The Effect of Simple Shear-Flow on Phase-Behavior
The phase behavior of polymer blends under simple shear flow has been studied using a custom-designed rheo-optical system consisting of a two-dimensional small-angle light scattering (SALS) device incorporated into a conventional rheometer. Two-dimensional SALS images were gathered for model polymer blend systems with different quiescent phase behavior : polystyrene/polyisobutylene (PS/PIB) that exhibits upper critical solution temperature phase behavior and polystyrene/poly(vinyl methyl ether) (PS/PVME) that shows lower critical solution temperature phase behavior. For the PS/PIB blend, shear-induced phase mixing occurred at a critical shear rate. Below that critical shear rate, the dispersed phase was highly elongated parallel to the flow direction. For PS/PVME blends, a streak scattering pattern was observed even though the sample became optically clear after shearing. We observed, apparently for the first time, the development of a bright-streak pattern from a transient dark-streak pattern for a polymer blend system under shear. Rheo-microscopy studies revealed an intriguing wave pattern that developed coincident with the observation of a streak pattern by SALS. The relationship between the two phenomena has not yet been established.
Keywords:ENHANCED CONCENTRATION FLUCTUATIONS;LIGHT-SCATTERING;INSITU FLUORESCENCE;POLYSTYRENE;METHYL-ETHER);TRANSITIONS;MISCIBILITY;SEPARATION;MIXTURE