화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.45, No.1-2, 204-211, 1996
Regulation of Spiramycin Synthesis in Streptomyces-Ambofaciens - Effects of Glucose and Inorganic-Phosphate
The production of the 16-membered macrolide antibiotic, spiramycin, in Streptomyces ambofaciens is inhibited by glucose, 2-deoxyglucose and inorganic phosphate. The role of intracellular ATP content and phosphorylated metabolites as common regulating signals of both glucose and phosphate inhibitory effects is discussed. Two enzymatic targets of the effect of phosphate on spiramycin biosynthesis were studied. Valine dehydrogenase, the first enzyme of valine catabolism (supplier of aglycone spiramycin precursors), and alkaline phosphatase, which cleaves phosphorylated intermediates, were repressed in the presence of excess phosphate.