Applied Microbiology and Biotechnology, Vol.43, No.1, 171-177, 1995
Influence of Organic and Inorganic Growth Supplements on the Aerobic Biodegradation of Chlorobenzoic Acids
The effect of yeast extract and its less complex substituents on the rate of aerobic dechlorination of 2-chlorobenzoic acid (2-ClBzOH) and 2,5-dichlorobenzoic acid (2,5-Cl(2)BzOH) by Pseudomonas sp. CPE2 strain, and of 3-chlorobenzoic acid (3-ClBzOH), 4-chlorobenzoic acid (4-ClBzOH) and 3,4-dichlorobenzoic acid (3,4-Cl(2)BzOH) by Alcaligenes sp. CPE3 strain were investigated. Yeast extract at 50 mg/l increased the average dechlorination rate of 200 mg/l of 4-ClBzOH, 2,5-Cl(2)BzOH, 3,4-Cl(2)BzOH, 3-ClBzOH and 2-ClBzOH by about 75%, 70%, 55%, 7%, and 1%, respectively. However, in the presence of yeast extract the specific dechlorination activity of CPE2 and CPE3 cells (per unit biomass) was always lower than without yeast extract, although it increased significantly during the exponential growth phase. When a mixed vitamin solution or a mixed trace element solution was used instead of yeast extract the rate of 4-ClBzOH dechlorination increased by 30%-35%, whereas the rate of 2,5-Cl(2)BzOH and 3,4-Cl(2)BzOH dechlorination increased by only 2%-10%. The presence of vitamins or trace elements also resulted in a specific dechlorination activity that was generally higher than that observed for the same cells grown solely on chlorobenzoic acid. The results of this work indicate that yeast extract, a complex mixture of readily oxidizable carbon sources, vitamins, and trace elements, enhances the growth and the dechlorination activity of CPE2 and CPE3 cells, thus resulting in an overall increase in the rate of chlorobenzoic acid utilization and dechlorination.
Keywords:PSEUDOMONAS SP;POLYCHLORINATED-BIPHENYLS;BACTERIAL CULTURE;DEGRADATION;KINETICS;MINERALIZATION;STRAIN;TRANSFORMATION;COCULTURES;GLUCOSE