화학공학소재연구정보센터
Plasma Chemistry and Plasma Processing, Vol.16, No.1, 127-139, 1996
Study of Deposition Offset in Plasma Spray of Zirconia
Numerical modeling and experimental measurements have been performed to study the effects of powder carrier gas flow rates and powder sizes on the deposition offset in a plasma spray of yttria-stablized zirconia. The mathematical model involved simultaneous solution of the continuity, momentum and energy equations of the plasma gas, the dynamics and heat transfer of powder particles in the plasma, and the coupling effects between the plasma and particles. Experiments included measurement of particle velocities by laser strobe technique and measurement of deposition offset. Calculated plasma temperatures and velocities are greater than 13,000 K and 2,000 m/s, respectively, in the vicinity of nozzle exit. For the plasma-particle momentum transfer, the drag coefficient was computed in two ways- with corrections accounting for the strongly varying plasma properties, and without these corrections. Calculated and experimental results, in respect to deposition offset, are in agreement to within 25% when calculated without varying properties corrections, and within about 40% with corrections; agreement in respect to average particle velocities is within 20% when calculated without varying properties corrections, and within the range 30-50% with corrections.