화학공학소재연구정보센터
Nature, Vol.392, No.6676, 582-585, 1998
Structures of medium-sized silicon clusters
Silicon is the most important semiconducting material in the microelectronics industry, If current miniaturization trends continue, minimum device features will soon approach the size of atomic clusters. In this size regime, the structure and properties of materials often differ dramatically from those of the hulk, An enormous effort has been devoted to determining the structures of free silicon clusters(1-22). Although progress has been made for Si-n with n < 8, theoretical predictions for larger clusters are contradictory(2-22) and none enjoy any compelling experimental support, Here we report geometries calculated for medium-sized silicon clusters using an unbiased global search with a genetic algorithm. Ion mobilities(23) determined for these geometries by trajectory calculations are in excellent agreement,vith the values that we measure experimentally, The cluster geometries that we obtain do not correspond to fragments of the hulk, For n = 12-18 they are built on a structural motif consisting of a stack of Si-9 tricapped trigonal prisms, For n greater than or equal to 19, our calculations predict that near-spherical cage structures become the most stable, The transition to these more spherical geometries occurs in the measured mobilities for slightly larger clusters than in the calculations, possibly because of entropic effects.