Korean Journal of Chemical Engineering, Vol.39, No.11, 2916-2924, November, 2022
Development of real time responding hydrogen fueling protocol and its risk assessment
Existing hydrogen fueling protocols (HFP), such as SAE J2601, have limitations in low efficiency and limited applicability for various vehicle types. They use lookup tables or formulas constructed by simulation and do not calculate the optimal fueling strategy in real-time. To address this issue, we proposed a real-time responding HFP (RTR-HFP) in our previous study and further improved the RTR-HFP in this study. We introduced a tuning parameter to transform the simplified model from the extreme case to the real case, and we can determine a less conservative pressure ramp rate (PRR) by RTR-HFP in real-time. In addition, to avoid unstable fueling issues when the storage system pressure is too low, we integrated the RTR-HFP with the existing table-based strategy and determined the best PRR while restricting the upper bound on PRR. Furthermore, we performed a risk assessment of the fueling system and found a solution to ensure the safety integrity level in the control system.
Keywords:Hydrogen Fueling Protocol;Hydrogen Refueling Station;Compressed Hydrogen Storage System;Average;Pressure Ramp Rate;Real-time Responding HFP