Polymer(Korea), Vol.46, No.3, 389-396, May, 2022
3D 프린트를 이용한 다공성 TPU-PPy 유연복합체의 제조 및 에너지 저장장치의 전극 스캐폴드 응용
Preparation of Porous TPU-PPy Flexible Composite Using 3D Printer and Its Application as Electrode Scaffold for Energy Storage Devices
E-mail:
초록
슈퍼커패시터에서 기공 구조의 설계는 전해질과 전극의 전기화학반응을 위한 넓은 단면적을 제공할 수 있다. 본 연구에서는 열가소성 폴리우레탄을 fused deposition modeling 방식을 가진 3D 프린터를 이용하여 설계된 다양 한 구조와 기공률의 매크로 기공을 가진 연질 scaffold를 제조하였으며 pyrrole을 기상중합해 전도성 고분자인 polypyrrole가 내부까지 중합된 전극 scaffold를 제작하였다. 제작된 연질 전극 scaffold는 optical microscope, field emission-scanning electron microscope, energy dispersive X-ray spectroscopy, universal testing machine을 이용해 특 성 분석을 진행하였다. 모든 구조에서 중합은 성공적으로 일어난 것을 확인할 수 있었고 기공 구조에 따라 조정 가 능한 기계적 특성을 나타낸다는 것을 확인할 수 있었다. 전극으로의 성능은 기공률이 높아질수록 더욱 우수한 성능 을 보이는 것을 확인할 수 있었으며 기공 구조에 따른 차이는 크게 나타나지 않았다. 가장 우수한 성능을 보인 80%의 기공률을 가진 ladder구조의 전극 scaffold는 0.5 mA/cm2의 전류밀도에서 약 1.31 F/g의 커패시턴스와 0.18 Wh/kg의 에너지 밀도를 나타내었다.
The design of the pore structure in the supercapacitor can provide a large interface area for the electrochemical reaction of the electrolyte and the electrode. In this study, a thermoplastic polyurethane scaffold having specially designed macropores of various structures and porosity was manufactured to prepare a flexible electrode polymerized with polypyrrole using a 3D printer with a fused deposition modeling method. The fabricated soft electrode scaffolds were characterized using optical microscope, field emission-scanning electron microscope, energy dispersive X-ray spectroscopy, and universal testing machine. It could be confirmed that polymerization took place successfully in all structures, and it was confirmed that mechanical properties tunable according to the pore structure were exhibited. As for the performance of the electrode, it was concluded that the higher the porosity, the better the performance, and there was no significant difference by the effect pore structure. The ladder-structured electrode scaffold with 80% porosity, which showed the best performance, exhibited a capacitance of about 1.31 F/g and an energy density of 0.18 Wh/kg at a current density of 0.5 mA/cm2.
- Li Q, Horn M, Wang Y, MacLeod J, Motta N, Liu JA, Materials, 12, 703 (2019)
- Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243 (2011)
- Simon P, Gogotsi Y, Nat. Mater., 7, 845 (2008)
- González A, Goikolea E, Barrena JA, Mysyk R, Renew. Sust. Energ. Rev., 58, 1189 (2016)
- Lu X, Yu M, Wang G, Tong Y, Li Y, Energy Environ. Sci., 7, 2160 (2014)
- Duay J, Gillette E, Hu J, Lee SB, ACS Nano, 7, 1200 (2013)
- Saravanakumar B, Purushothaman KK, Muralidharan G, J. Electroanal. Chem., 758, 111 (2015)
- Zhou C, Zhang Y, Li Y, Liu J, Nano Lett., 13, 2078 (2013)
- Lu Q, Zhou Y, J. Power Sources, 196, 4088 (2011)
- Wu Q, Xu Y, Yao Z, Liu A, Shi G, ACS Nano, 4, 1963 (2010)
- Sharma K, Arora A, Tripathi SK, J. Energy. Storage, 21, 801 (2019)
- Meng Q, Cai K, Chen Y, Chen L, Nano Energy, 36, 268 (2017)
- Liu Z, Tan X, Gao X, Song L, J. Power Sources, 267, 812 (2014)
- Choi BG, Yang M, Hong WH, Choi JW, Huh YS, ACS Nano, 6, 4020 (2012)
- Liu S, Li L, ACS Appl. Mater. Interfaces, 9, 26429 (2017)
- Yan Q, Dong H, Su J, Han J, Song B, Wei Q, Shi YA, Engineering, 4, 729 (2018)
- Zhang F, Wei M, Viswanathan VV, Swart B, Shao Y, Wu G, Zhou C, Nano Energy, 40, 418 (2017)
- Xue J, Gao L, Hu X, Cao K, Zhou W, Wang W, Lu Y, Nano-Micro Lett., 11, 46 (2019)
- Park SH, Kaur M, Yun D, Kim WS, Langmuir, 34, 10897 (2018)
- Han YH, Travas-Sejdic J, Wright B, Yim JH, Macromol. Chem. Phys., 212, 521 (2011)
- Kim SW, Lee SW, Kim J, Yim JH, Cho KY, Polymer, 102, 127 (2016)
- Park JS, Kim B, Lee BT, Choiand JS, Yim JH, J. Mater. Chem. B, 6, 4082 (2018)
- Fernandez FDM, Khadka R, Yim JH, RSC Adv., 10, 22533 (2020)
- Park JS, Kang HJ, Lee BT, Chio JS, Yim JH, ACS Appl. Polym. Mater., 2, 1482 (2020)
- Kim YJ, Kang HJ, Moerk CT, Lee BT, Choi JS, Yim JH, Sens. Actuators B-Chem., 344, 130269 (2021)
- Kim YJ, Kim DH, Choi JS, Yim JHA, Polymer, 240, 124490 (2022)
- Gray RL, Lee RE, Plastics Additives, 537 (1998)
- Losaria PM, Yim JHA, J. Ind. Eng. Chem., 74, 108 (2019)