화학공학소재연구정보센터
Polymer(Korea), Vol.46, No.3, 369-376, May, 2022
다공성 미세입자가 포함된 세포 스페로이드의 제조 및 분석
Fabrication and Characterization of Cell Spheroid Containing Porous Microparticles
E-mail:
초록
본 연구에서는 다공성의 낙엽적층구조 미세입자와 세포로 구성된 세포 스페로이드 시스템을 제조하였다. 본 연구팀이 고안한, 고분자 용액의 단순 가열-냉각 과정을 통해 낙엽적층구조를 가지는 다공성 미세입자를 제조하였 고, 세포와 낙엽적층구조 미세입자 혼합 용액을 아가로스 기반의 micro-concave array에 분주하여 약 500 μm의 크 기를 가지는 세포/미세입자 스페로이드를 제조하였다. In vitro 세포 실험을 통해, 세포/미세입자 스페로이드 형성을 위한 최적의 비율로 세포와 미세입자가 9/1(개수비)로 혼합된 군이 선정되었으며, 스페로이드 내부에 포함된 낙엽적 층구조 미세입자는 산소와 자양분을 포함한 세포 배양액의 공급 및 세포 대사물질들의 배출을 위한 micro-channel networks로의 역할을 통해 스페로이드의 불균일한 세포 구성을 억제할 수 있는, 즉 기존 세포 스페로이드의 한계를 극복할 수 있는 하나의 해결책이 될 수 있음을 확인하였다.
Although the extensive use of cell spheroids in various fields, cellular heterogeneity by insufficient diffusion of oxygen/nutrients and accumulation of metabolic wastes remains as a challenge. Herein, we developed a cell spheroid system containing porous polycaprolactone (PCL) microparticles. The PCL microparticles with leaf-stacked structure (LSS microparticles) were fabricated using a heating-cooling technique. Cells and LSS microparticles suspension were seeded into agarose-based micro-concave array to prepare Cell/LSS microparticle (Cell/LSS) spheroids with a size of about 500 μm. On the basis of in vitro cell culture, it was recognized that the LSS microparticles uniformly distributed in Cell/LSS spheroids can be micro-channel networks for sufficient supply of medium including oxygen/nutrients and removal of metabolic wastes, and thus prevent cellular heterogeneity in spheroids. Therefore, we suggest that the Cell/LSS spheroid system may be an alternative technique to overcome the limitations of conventional cell spheroids as well as promising platform system for various studies.
  1. Rim NG, Lee YB, Kim SJ, Shin HS, Korean Ind. Chem. News, 13, 2 (2010)
  2. Mandrycky C, Phong K, Zheng Y, MRS Commun., 7, 332 (2017)
  3. Registration status by registration institution wishing to donate and registration status of those wishing to donate by region. [Online], 2022, Center of Korean Network for Organ Sharing [KONOS] (Ministry of Health and Welfare).
  4. Langer R, Vacanti JP, Science, 260, 920 (1993)
  5. Berthiaume F, Maguire TJ, Yarmush ML, Annu. Rev. Chem. Biomol. Eng., 2, 403 (2011)
  6. Jin HR, Korean J. Otolaryngol., 46, 355 (2003)
  7. Shafiee A, Atala A, Annu. Rev. Chem. Biomol. Eng., 68, 29 (2017)
  8. Thiemicke A, Jashnsaz H, Li G, Neuert G, Sci. Rep., 9, 1 (2019)
  9. Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ, Biotechnol. Adv., 34, 1427 (2016)
  10. Langhans SA, Front. Pharmacol., 9, 1 (2018)
  11. Sooriyaarachchi D, Minière HJ, Maharubin S, Tan GZ, Tissue Eng. Regen. Med., 16, 29 (2019)
  12. Fang Y, Eglen RM, SLAS Discov., 22, 456 (2017)
  13. Cui X, Hartanto Y, Zhang H, J. R. Soc. Interface, 14, 20160877 (2017)
  14. Inch WR, McCredie JA, Sutherland RM, Growth, 34, 271 (1970)
  15. Białkowska K, Komorowski P, Bryszewska M, Miłowska K, Int. J. Mol. Sci., 21, 6225 (2020)
  16. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FP, J. Cell Physiol., 230, 16 (2015)
  17. Liao W, Wang J, Xu J, You F, Pan M, Xu X, Weng J, Han X, Li S, Li Y, Liang K, Peng Q, Gao Y, Tissue Eng., 10, 1 (2019)
  18. Ryu NE, Lee SH, Park H, Cells, 8, 1620 (2019)
  19. Edmondson R, Broglie JJ, Adcock AF, Yang L, Assay Drug Dev. Techn., 12, 207 (2014)
  20. Park JH, Korean J. Otorhinolaryngol-Head Neck Surg., 63, 245 (2020)
  21. Wang A, Madden LA, Paunov VN, J. Mater. Chem. B, 8, 10487 (2020)
  22. Chaicharoenaudomrung N, Kunhorm P, Noisa P, World J. Stem Cells, 11, 1065 (2019)
  23. Tseng TC, Wong CW, Hsieh FY, Hsu SH, Biotechnol. J., 12, 1700064 (2017)
  24. Laschke MW, Menger MD, Trends Biotechnol., 35, 133 (2017)
  25. Jeon JH, Yun BG, Lim MJ, Kim SJ, Lim MH, Lim JY, Park SH, Kim SW, Tissue Eng. Regen. Med., 17, 81 (2020)
  26. Kim JH, Lee JY, Tissue Eng. Regen. Med., 17, 271 (2020)
  27. Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli EA, Biomaterials, 28, 5487 (2007)
  28. Gilazieva Z, Ponomarev A, Rutland C, Rizvanov A, Solovyeva V, Cancers, 12, 2727 (2020)
  29. Cesarz Z, Tamama K, Stem Cells Int., 2016, 9176357 (2016)
  30. Kojima N, Takeuchi S, Sakai Y, Sens. Actuators B-Chem., 198, 249 (2014)
  31. Lee J, Lee S, Ahmad T, Perikamana SKM, Lee J, Kim EM, Shin H, Biomaterials, 255, 120192 (2020)
  32. Kim HY, An BS, Kim MJ, Jeoung YJ, Byun JH, Lee JH, Oh SH, ACS Biomater. Sci. Eng., 6, 2231 (2020)
  33. Zhao P, Chen L, Shao H, Zhang Y, Sun Y, Ke Y, Ramakrishna S, He L, Xue W, Biomed. Mater., 11, 015021 (2016)
  34. Sun X, Kaufman PD, Chromosoma, 127, 175 (2018)
  35. Kim HY, Lee JH, Lee HAR, Park JS, Woo DK, Lee HC, Rho GJ, Byun JH, Oh SH, ACS Appl. Mater. Interfaces, 10, 21091 (2018)
  36. Kim MJ, Lee JH, Kim JS, Kim HY, Lee HC, Byun JH, Lee JH, Kim NH, Oh SH, Biomacromolecules, 21, 4795 (2020)
  37. Kuo CW, Chueh DY, Chen P, J. Nanobiotechnol., 12, 54 (2014)
  38. Park SG, Li MX, Eom JH, Suh EY, Cho WK, Joung YK, Huh KM, Polym. Korea, 45, 372 (2021)
  39. Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli EA, Biomaterials, 28, 5487 (2007)
  40. Lee GH, Lee JS, Oh HJ, Lee SH, PLoS One, 11, e0161026 (2016)
  41. Weir C, Morel-Kopp MC, Gill A, Tinworth K, Ladd L, Hunyor SN, Ward C, Heart Lung Circ., 17, 395 (2008)