Korean Chemical Engineering Research, Vol.60, No.2, 217-222, May, 2022
PEMFC 고분자 막의 전기화학적 열화과정에서 OCV 감소 및 회복 거동을 통한 비가역적 열화 연구
A Study on Irreversible Degradation through OCV Reduction and Recovery Behavior in the Electrochemical Degradation Process of PEMFC Polymer Membrane
E-mail:
초록
고분자 전해질 연료전지(PEMFC) 고분자 막의 전기화학적 내구성을 가속적으로 평가하는 개회로 전위 유지(OCV holding) 과정에서 OCV 변화 거동을 해석하는 것은 매우 중요하다. 본 연구에서는 내구성이 각기 다른 세 종류의 MEA(membrane electrode assembly)의 실험데이터를 이용한 실험식을 만들어 비교 및 검토하였다. 막 내부에 라디칼 제거제가 없는 강화막 MEA의 내구 평가시간은 383 h, 막 내부에 라디칼 제거제가 있는 강화막 MEA의 내구 평가시 간은 각각 1,000, 1,650 h이었다. 고분자 막의 열화는 활성화에 의해 회복이 가능한 가역적 열화와 회복이 되지 않은 비가역적 열화로 구분했다. 고분자 막의 비가역적 열화는 수소투과도 증가로 나타나는데 수소투과도 변화가 세 MEA 모두 비가역적 열화 상수 c와 유사한 형태를 보였다. 회복이 되지 않은 비가역적 열화가 시작되는 것은 수소투과도 증 가로 나타나고, 수소투과도 증가로 인해 OCV가 회복되지 않아서 OCV 회복선의 기울기가 감소하고 이를 실험식의 상 수 c 값의 증가로 확인할 수 있었다.
It is very important to analyze the OCV change behavior during the open circuit potential holding (OCV holding) process, which accelerates the evaluation of the electrochemical durability of the PEMFC membrane. In this study, an empirical formula using the experimental data of three MEAs with different durability was created and compared. The durability evaluation time of the reinforced membrane MEA without radical scavenger inside the membrane was 383 h, and the durability evaluation time of the reinforced membrane MEA with radical scavenger inside the membrane was 1,000 and 1,650 h, respectively. The degradation of the membrane was divided into the reversible degradation that can be recovered by activation and the irreversible degradation that is not recovered. The irreversible degradation of the membrane was indicated by an increase in hydrogen permeability, and the change in hydrogen permeability was similar to the irreversible degradation constant c of all three MEAs. The initiation of irreversible deterioration without recovery is indicated by an increase in hydrogen permeability, and the OCV is not recovered due to an increase in hydrogen permeability, so the slope of the OCV recovery line (ORL) decreases, which can be confirmed by an increase in the constant c value of the empirical formula.
- Peighambardoust SJ, Rowshanzamir S, Amjadi M, Int. J. Hydrog. Energy, 35(17), 9349 (2010)
- U. S. DOE Fuel Cell Technologies Office, “Multi-Year Research, Development, and Demonstration Plan,” Section 3.4 Fuel Cells, p. 1(2016).
- Tsotridis G, Pilenga A, De Marco G, Malkow T, “Eu Harmonised Test Protocols for PEMFC MEA Testing in Single Cell Configuration for Automotive Applications,” JRC Sci. Policy Rep. (2015),
- Daido Univ., Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., “Cell Evaluation and Analysis Protocol Guidline,” NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30 (2014).
- Ren P, Pei P, Li Y, Wu Z, Chen D, Huang S, Prog. Energy Combust. Sci., 81, 110871 (2020)
- Kundu S, Fowler M, Simon LC, Abouatallah R, J. Power Sources, 182(1), 254 (2008)
- Zhang S, Yuan XZ, Hin JNC, Wang H, Wu J, Friedrich KA, Schulze M, J. Power Sources, 195, 1142 (2010)
- Gazdzick P, Mitzel J, Sanchez DG, Schulze M, Fridrich KA, J. Power Sources, 327, 86 (2016)
- Inaba M, Kinumoto T, Kiriake M, Umebayashi R, Tasaka A, Ogumi Z, Electrochim. Acta, 51, 5746 (2006)
- Larminie, J. and Dicks, A., “Fuel cell Systems Explained,” John Wiley & Sons, Chichester, 45-56(2003).
- Oh SH, Kwag AH, Lee DW, Lee MS, Lee DH, Park KP, Korean Chem. Eng. Res., 57(6), 768 (2019)
- Hwang BC, Oh SH, Lee MS, Lee DH, Park KP, Korean J. Chem. Eng., 35(11), 2290 (2018)