화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 245-252, May, 2022
Toward highly robust reversal-tolerant anodes in polymer electrolyte membrane fuel cells
E-mail:
A reversal tolerant anode (RTA) mitigates carbon corrosion under hydrogen starvation by promoting a water oxidation reaction with an oxygen-evolution-reaction catalyst. However, achieving long-lasting and repeatable voltage-reversal tolerance remains a challenge. Herein, we propose highly robust bilayered RTAs consisting of IrOx and Pt black layers (IrOx//Pt) for use in polymer electrolyte membrane fuel cells. Compared to bi-layered IrOx//Pt/C RTAs, the carbon-free IrOx//Pt RTAs have an exceptionally longer voltage-reversal time and unprecedented level of repeatability. Additionally, placing the IrOx layer on the membrane side of the RTA is more effective in maintaining the water oxidation reaction than placing it on the diffusion layer side. Oxidative dissolution of IrOx in the IrOx//Pt RTAs under repeated voltage reversals emphasizes the importance of lowering the water oxidation potential of RTA. The carbon-free, bi-layered RTA design presented in this work provides a new path for achieving long-lasting and repeatable voltagereversal tolerance.
  1. Taniguchi A, Akita T, Yasuda K, Miyazaki Y, J. Power Sources, 130(1-2), 42 (2004)
  2. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP, J. Power Sources, 127 (2004)
  3. Kim S, Shimpalee S, van Zee JW, J. Power Sources, 135(1-2), 110 (2004)
  4. Ferreira-Aparicio P, Chaparro AM, Gallardo B, Folgado MA, Daza L, ECS Trans., 26, 1 (2019)
  5. Hu L, Hong BK, Oh JG, Litster S, ACS Appl. Energy Mater., 2, 10 (2019)
  6. Mandal P, Hong BK, Oh JG, Litster S, J. Power Sources, 397, 397 (2018)
  7. Hong BK, Mandal P, Oh JG, Litster S, J. Power Sources, 328, 280 (2016)
  8. Wang Y, Xie X, Zhou C, Feng Q, Zhou Y, Yuan XZ, Xu J, Fan J, Zeng L, Li H, Wang H, J. Power Sources, 449, 227542 (2020)
  9. Maric R, Gebauer C, Nesselberger M, Hasché F, Strasser P, J. Electrochem. Soc., 167, 12 (2020)
  10. Ahn CY, Kang SY, Choi HJ, Kim OH, Sung YE, Cho YH, Int. J. Hydrog. Energy, 46, 27 (2021)
  11. Atanasoski RT, Atanasoska LL, Cullen DA, Lecture Notes Energy, 9, 637 (2013)
  12. You E, Min M, Jin SA, Kim T, Pak C, J. Electrochem. Soc., 165, 6 (2018)
  13. Lee SW, Lee BH, Kim TY, Baik C, Kim MS, Chai GS, Pak C, Catal. Commun., 130, 105758 (2019)
  14. Zhou X, Ji H, Li B, Zhang C, ACS Omega, 5, 17 (2020)
  15. Kim TY, Lee SW, Pak C, J. Ind. Eng. Chem., 85, 87 (2020)
  16. Ralph TR, Hogarth MP, Platinum Mater. Rev., 46, 3 (2002)
  17. Ye S, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, 2008.
  18. Maass S, Finsterwalder F, Frank G, Hartmann R, Merten C, J. Power Sources, 176, 2 (2008)
  19. Lim KH, Lee WH, Jeong Y, Kim H, J. Electrochem. Soc., 164, 14 (2017)
  20. Lin R, Yu H, Zhong D, Han L, Lu Y, Tang S, Hao Z, Energy Conv. Manag., 236, 114037 (2021)
  21. Cai C, Wan Z, Rao Y, Chen W, Zhou J, Tan J, Pan M, J. Power Sources, 455, 227952 (2020)
  22. Wang Y, Zhou C, Xie X, Yang C, Feng Q, Zou J, Yuan XZ, Fan J, Zeng L, Li H, Wang H, Int. J. Hydrog. Energy, 45, 1 (2020)
  23. Zhou X, Yang Y, Li B, Zhang C, ACS Appl. Mater. Interfaces, 13, 2 (2021)
  24. Cai C, Rao Y, Zhou J, Zhang L, Chen W, Wan Z, Tan J, Pan M, J. Power Sources, 473, 228542 (2020)
  25. Joo T, Hu L, Hong BK, Oh JG, Litster S, J. Power Sources, 472, 228439 (2020)
  26. Zhu Z, Yan X, Tang H, Cai H, Pan M, Zhang H, Luo J, J. Power Sources, 351, 138 (2017)
  27. Roh CW, Kim HE, Choi J, Lim J, Lee H, J. Power Sources, 443, 227270 (2019)
  28. Lee SW, Lee B, Baik C, Kim TY, Pak C, J. Mater. Sci. Technol., 60, 105 (2021)
  29. Kim HE, Shin S, Lee H, J. Catal., 395, 404 (2021)
  30. Bentele D, Aylar K, Olsen K, Klemm E, Eberhardt SH, J. Electrochem. Soc., 168, 2 (2021)
  31. Ralph TR, Hudson S, Wilkinson DP, ECS Trans., 1, 8 (2019)
  32. Moore CE, Eastcott J, Cimenti M, Kremliakova N, Gyenge EL, J. Power Sources, 417, 53 (2019)
  33. Ioroi T, Yasuda K, J. Power Sources, 450, 227656 (2020)
  34. Hu L, Hong BK, Oh JG, Litster S, ACS Appl. Energy Mater., 4, 1 (2021)
  35. Waje M, Li W, Chen Z, Larsen P, Yan Y, ECS Trans., 11, 1 (2019)
  36. Lee DH, Kim MK, Guim H, Yuk S, Choi J, Choi S, Doo G, Lee DW, Noh J, Kim HT, Mater. Adv., 1, 2 (2020)
  37. O’Hayre R, Cha SW, Colella W, Prinz FB, Fuel Cell Fundamentals (2016)
  38. Emmanuel BO, Barendse P, Chamier J, 2018 IEEE Energy Conversion Congress and Exposition, ECCE 2018, 2018.
  39. Deabate S, Gebel G, Huguet P, Morin A, Pourcelly G, Energy Environ. Sci., 5, 8824 (2012)
  40. Ge S, Wang CY, J. Electrochem. Soc., 154, 10 (2007)
  41. Hussey DS, Jacobson DL, Arif M, Owejan JP, Gagliardo JJ, Trabold TA, J. Power Sources, 172, 1 (2007)
  42. Steinbach AJ, Allen JS, Borup RL, Hussey DS, Jacobson DL, Komlev A, Kwong A, MacDonald J, Mukundan R, Pejsa MJ, Roos M, Santamaria AD, Sieracki JM, Spernjak D, Zenyuk IV, Weber AZ, Joule, 2(7), 1297 (2018)
  43. Jovanovic P, Hodnik N, Ruiz-Zepeda F, Arcon I, Jozinovic B, Zorko M, Bele M, Šala M, Šelih VS, Hocevar S, Gaberšcek M, J. Am. Chem. Soc., 137, 36 (2017)
  44. Moore CE, Afsahi F, Young AP, Gyenge EL, J. Phys. Chem. C, 123(38), 23361 (2019)
  45. Suermann M, Bensmann B, Hanke-Rauschenbach R, J. Electrochem. Soc., 166, 10 (2019)