화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.109, 137-146, May, 2022
Calculating osmotic pressure of liquid mixtures by association theory for sustainable separating of solvents by membrane processes
E-mail:,
Recent years, the separation of organic liquid mixtures achieved by organic solvent nanofiltration (OSN), organic solvent reverse osmosis (OSRO), and organic solvent forward osmosis (OSFO) has gained a great momentum. In the methods, it is of particular importance to know the osmotic pressure of liquid mixtures for the correct process design. Although the Van’t Hoff law is frequently employed to estimate the osmotic pressure of such mixtures, unprecedented serious errors might be added to the results. In this study, the osmotic pressure of numerous binary liquid mixtures is predicted using the original definition of osmotic pressure along with the cubic plus association (CPA) equation of state (EoS) and the Van’t Hoff equation at various temperatures and compositions. CPA EoS considers hydrogen bonding effects in associating compounds (those with hydrogen bonds such as water and alcohols). The obtained results reveal that unlike the Van’t Hoff equation (the average deviation = 19.95 bar), the original definition of osmotic pressure with the aid of CPA EoS (the average deviation = 3.86 bar) can properly predict the osmotic pressure of the studied mixtures. Our findings are beneficial for various techniques utilized in the separation of organic liquid mixtures.
  1. Salmani HJ, Desalin. Water Treat., 57, 12956 (2016)
  2. Scholes RC, King JF, Mitch WA, Sedlak DL, Environ. Sci. Technol., 54, 16176 (2020)
  3. Ma X, Zhu Z, Shi W, Ji W, Li J, Wang Y, et al., J. Mater. Chem. A, 9, 5404 (2021)
  4. Azhar M, Jaafar J, Aziz M, Umar Y, Mazumder MAJ, Nazal MK, J. Appl. Polym. Sci., 138, 50216 (2020)
  5. Maggay IV, Wu CJ, Guo HR, Liao XL, Chou CJ, Chang Y, et al., J. Membr. Sci., 618 (2021)
  6. Pruksasri S, Lanner B, Novalin S, LWT, 133 (2020)
  7. Ray H, Perreault F, Boyer TH, J. Environ. Chem. Eng., 8 (2020)
  8. Dai R, Guo H, Tang CY, Chen M, Li J, Wang Z, Environ. Sci. Technol., 53, 13776 (2019)
  9. Guo H, Peng LE, Yao Z, Yang Z, Ma X, Tang CY, Environ. Sci. Technol., 53, 2688 (2019)
  10. Hu J, Kim C, Halasz P, Kim JF, Kim J, Szekely G, J. Membr. Sci., 619 (2021)
  11. Soyekwo F, Liu C, Hu Y, Sep. Purif. Technol., 119028 (2021)
  12. Wang C, Park MJ, Seo DH, Drioli E, Matsuyama H, Shon H, Sep. Purif. Technol., 118657 (2021)
  13. Xia L, McCutcheon JR, Sep. Purif. Technol., 238 (2020)
  14. Liu C, Dong G, Tsuru T, Matsuyama H, J. Membr. Sci., 620 (2021)
  15. Galizia M, Bye KP, Front. Chem., 6 (2018)
  16. Liu C, Takagi R, Shintani T, Cheng L, Tung KL, Matsuyama H, ACS Appl. Mater. Interfaces, 12, 7586 (2020)
  17. Chau J, Basak P, Sirkar KK, J. Membr. Sci., 563, 541 (2018)
  18. Cui Y, Chung TS, Nat. Commun., 9 (2018)
  19. Li B, Japip S, Chung TS, Nat. Commun., 11 (2020)
  20. Linares RV, Li Z, Yangali-Quintanilla V, Ghaffour N, Amy G, Leiknes T, et al., Water Res., 88, 225 (2016)
  21. Zou S, Qin M, He Z, Water Res., 149, 362 (2019)
  22. Khraisheh M, Dawas N, Nasser M, Al-Marri M, Hussien MA, Adham S, et al., Environ. Technol., 41, 2533 (2019)
  23. Johnson DJ, Suwaileh WA, Mohammed AW, Hilal N, Desalination, 434, 100 (2018)
  24. Liu C, Takagi R, Saeki D, Cheng L, Shintani T, Yasui T, et al., J. Membr. Sci., 618 (2021)
  25. Raim V, Srebnik S, J. Membr. Sci., 563, 183 (2018)
  26. Granik VT, Smith BR, Lee SC, Ferrari M, Biomed. Microdevices, 4, 309 (2002)
  27. Sandler SI, Chemical, biochemical, and engineering thermodynamics, John Wiley & Sons, 2017.
  28. Salmani HJ, Lotfollahi MN, Mazloumi SH, Process Saf. Environ. Protect., 119, 191 (2018)
  29. Renon H, Prausnitz JM, AIChE J., 14, 135 (1968)
  30. Lakzian KL, Hosseiniallahchal S, Salmani HJ, Sanjarifard A, Thermochim. Acta, 691 (2020)
  31. Kontogeorgis GM, Folas GK, Thermodynamic models for industrial applications: from classical and advanced mixing rules to association theories, John Wiley & Sons, 2009.
  32. Pourabadeh A, Fard AS, Salmani HJ, J. Mol. Liq., 307 (2020)
  33. Soave G, Chem. Eng. Sci., 27, 1197 (1972)
  34. Salmani HJ, Lotfollahi MN, Mazloumi SH, J. Mol. Liq., 297 (2020)
  35. Lakzian K, Salmani HJ, J. Mol. Liq., 324 (2021)
  36. Kontogeorgis GM, Michelsen ML, Folas GK, Derawi S, von Solms N, Stenby EH, Ind. Eng. Chem. Res., 45, 4855 (2006)
  37. Salmani HJ, Lotfollahi MN, Mazloumi SH, J. Mol. Liq., 310 (2020)
  38. Folas GK, Kontogeorgis GM, Michelsen ML, Stenby EH, Fluid Phase Equilib., 249, 67 (2006)
  39. Folas GK, Derawi SO, Michelsen ML, Stenby EH, Kontogeorgis GM, Fluid Phase Equilib., 228, 121 (2005)
  40. Hirawan R, Sinha S, Iwarere SA, Raal JD, Naidoo P, Ramjugernath D, J. Chem. Eng. Data, 59, 1643 (2014)
  41. Hwang SC, Robinson RL, J. Chem. Eng. Data, 22, 319 (1977)
  42. Góral M, Oracz P, Warycha S, Fluid Phase Equilib., 152, 109 (1998)
  43. Oh JH, Park SJ, J. Chem. Eng. Data, 50, 1564 (2005)
  44. Dortmond. Vapor-Liquid Equilibrium Data Set 14866. Dortmund Data Bank, Vapor-Liquid Equilibrium Data Set 14866.
  45. Horstmann S, Fischer K, Gmehling J, J. Chem. Eng. Data, 49, 1499 (2004)
  46. Polák J, Murakami S, Lam VT, Pflug HD, Benson GC, Can. J. Chem., 48, 2457 (1970)
  47. Smith VC, Robinson RL, J. Chem. Eng. Data, 15, 391 (1970)
  48. Sugi H, Katayama T, J. Chem. Eng. Jpn., 11, 167 (1978)
  49. O’Shea SJ, Stokes RH, J. Chem. Thermodyn., 18, 691 (1986)
  50. Hongo M, Tsuji T, Fukuchi K, Arai Y, J. Chem. Eng. Data, 39, 688 (1994)
  51. Ronc M, Ratcliff GR, Can. J. Chem. Eng., 54, 326 (1976)
  52. Oracz P, Góral M, Wilczek-Vera G, Warycha S, Fluid Phase Equilib., 126, 71 (1996)
  53. Aim K, Fluid Phase Equilib., 2, 119 (1978)