화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.2, 119-125, April, 2022
유기태양전지의 전자 받개 물질들
Electron Acceptors in Organic Solar Cells
E-mail:
초록
최근 유기태양전지의 효율이 18%를 넘어섰다. 이러한 급속한 효율의 증가는 전자 주개 고분자와 짝을 이루는 전자 받개 물질의 개발과 깊은 연관성을 가지고 있다. 이 미니 리뷰에서는 전자 받개 물질의 개발 과정을 통해 유기태양전 지의 발전 양상을 살펴본다. 본 리뷰의 첫 번째 파트에서는 유기태양전지 발전의 전반부를 이끌었던 풀러렌 기반 전 자 받개 물질에 대해 살펴본다. 그리고 두 번째 파트에서는 풀러렌 기반 전자 받개 물질의 단점들을 극복할 잠재력을 가지고 있으며, 유기태양전지에 새로운 전기를 가져다 준 비(非)플러렌 기반 전자 받개 물질에 대해서 소개한다. 마지막 파트에서는 리뷰의 전체적인 요약과 더불어 20% 효율을 넘어설 전략에 대해 간단히 논의하며 본 리뷰를 마무리한다.
The power conversion efficiency of organic solar cells has reached over 18%. The rapid increase in the efficiency is largely associated with the development of electron acceptors paired with proper electron donor polymers. In this mini review, the progress of organic solar cells is reviewed in terms of the development of electron acceptors. In the first part of the review, fullerene-based electron acceptors that have led the first half of organic solar cell development were dealt with. In the second part of it, nonfullerene-based electron acceptors, which have potentials to overcome the demerits of fullerene-based electron acceptors and opened a new era of organic solar cells, were introduced. Lastly, some suggestions to tackle the efficiency barrier of 20% are given with the summary of the review in the closing section.
  1. Pochettino A, Acad. Lincei Rend., 15, 355 (1906)
  2. Spanggaard H, Krebs FC, Sol. Energy Mater. Sol. Cells, 83, 125 (2004)
  3. Delacote GM, Fillard JP, Marco FJ, Solid State Commun., 2, 373 (1964)
  4. Knupfer M, Appl. Phys. A-Mater. Sci. Process., 77, 623 (2003)
  5. Tang CW, Appl. Phys. Lett., 48, 183 (1986)
  6. Hiramoto M, Fujiwara H, Yokoyama M, Appl. Phys. Lett., 58, 1062 (1991)
  7. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB, Nature, 376, 198 (1995)
  8. Deibel C, Mack D, Gorenflot J, Schöll A, Krause S, Reinert F, Rauh D, Dyakonov V, Phys. Rev. B, 81, 085202 (2010)
  9. Mikhnenko OV, Azimi H, Scharber M, Morana M, Blom PWM, Loi MA, Energ. Environ. Sci., 5, 6960 (2012)
  10. Sariciftci NS, Smilowitza L, Heeger AJ, Wudl F, Science, 258, 1474 (1992)
  11. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL, J. Org. Chem., 5, 532 (1995)
  12. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270, 1789 (1995)
  13. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J, Sci. China Chem., 58, 248 (2015)
  14. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X, Nat. Rev. Mater., 3, 18003 (2018)
  15. Li C, Zhou J, Song J, Xu J, Zhang H, Zhang X, Guo J, Zhu L, Wei D, Han G, Min J, Zhang Y, Xie Z, Yi Y, Yan H, Gao F, Liu F, Sun Y, Nat. Energy, 6, 605 (2021)
  16. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE, Nature, 318, 162 (1985)
  17. Gélinas S, Rao A, Kumar A, Smith SL, Chin AW, Clark J, van der Poll TS, Bazan GC, Friend RH, Science, 343, 512 (2014)
  18. Taylor R, Walton DRM, Nature, 363, 685 (1993)
  19. Iyoda M, Yoshida M, J. Synth. Org. Chem. Jpn., 53, 756 (1995)
  20. Kiely AF, Haddon RC, Meier MS, Selegue JP, Brock CP, Patrick BO, Wang GW, Chen Y, J. Am. Chem. Soc., 121, 7971 (1999)
  21. Greenham NC, Samuel IDW, Hayes GR, Phillips RT, Kessener YARR, Moratti SC, Holmes AB, Friend RH, Chem. Phys. Lett., 241, 89 (1995)
  22. Hedley GJ, Ward AJ, Alekseev A, Howells CT, Martins ER, Serrano LA, Cooke G, Ruseckas A, Samuel IDW, Nat. Commun., 4, 2867 (2013)
  23. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ, Adv. Funct. Mater., 15, 1617 (2005)
  24. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y, Adv. Funct. Mater., 17, 1636 (2007)
  25. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC, Nat. Mater., 6, 497 (2007)
  26. Lenes M, Wetzelaer GJAH, Kooistra FB, Veenstra SC, Hummelen JC, Blom PWM, Adv. Mater., 20, 2116 (2008)
  27. He YJ, Chen HY, Hou JH, Li YF, J. Am. Chem. Soc., 132, 1377 (2010)
  28. Zhao GJ, He YJ, Li YF, Adv. Mater., 22, 4355 (2010)
  29. Arbogast JW, Foote CS, J. Am. Chem. Soc., 113, 8886 (1991)
  30. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ, Angew. Chem.-Int. Edit., 42, 3371 (2003)
  31. Zhou WY, Xie SS, Qian SF, Zhou T, Zhao RA, Wang G, J. Appl. Phys., 80, 459 (1996)
  32. Ye L, Zhang SQ, Zhao WC, Yao HF, Hou JH, Chem. Mater., 26, 3603 (2014)
  33. Yao H, Zhao W, Zheng Z, Cui Y, Zhang J, Wei Z, Hou J, J. Mater. Chem. A, 4, 1708 (2016)
  34. Izquierdo MA, Broer R, Havenith RWA, J. Phys. Chem. A, 123, 1233 (2019)
  35. Liu X, Li YX, Ding K, Forrest S, Phys. Rev. Appl., 11, 024060 (2019)
  36. Hou JH, Inganas O, Friend RH, Gao F, Nat. Mater., 17, 119 (2018)
  37. Leblebici SY, Chen TL, Oalde-Veasco P, Yang WL, Ma BW, ACS. Appl. Mater. Inter., 5, 10105 (2013)
  38. Kraner S, Scholz R, Koerner C, Leo K, J. Phys. Chem. C, 119, 22820 (2015)
  39. Li HW, Guan Z, Cheng Y, Lui T, Yang Q, Lee CS, Chen S, Tsang SW, Adv. Electron. Mater., 2, 1600200 (2016)
  40. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ, Adv. Mater., 18, 789 (2006)
  41. Dennler G, Scharber MC, Ameri T, Denk P, Forberich K, Waldauf C, Brabec CJ, Adv. Mater., 20, 579 (2008)
  42. Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X, Adv. Mater., 27, 1170 (2015)
  43. Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J, Adv. Mater., 28, 4734 (2016)
  44. Qian D, Ye L, Zhang M, Liang Y, Li L, Huang Y, Guo X, Zhang S, Tan Z, Hou J, Macromolecules, 45, 9611 (2012)
  45. Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y, J, 3, 1140 (2019)
  46. Cui CH, Li YF, Energ. Environ. Sci., 12, 3225 (2019)
  47. Armin A, Li W, Sandberg OJ, Xiao Z, Ding L, Nelson J, Neher D, Vandewal K, Shoaee S, Wang T, Ade H, Heumüller T, Brabec C, Meredith P, Adv. Eng. Mater., 11, 2003570 (2021)
  48. Hood S, Zarrabi N, Meredith P, Kassal I, Armin A, J. Phys. Chem. Lett., 10, 3863 (2019)
  49. Liu Y, Zheng ZL, Coropceanu V, Bredas JL, Ginger DS, Mater. Horiz., 9, 325 (2022)