화학공학소재연구정보센터
Macromolecular Research, Vol.30, No.3, 190-197, March, 2022
A Comparative Study of Enzyme-Mediated Crosslinking of Catechol- and Phenol-Functionalized Tetronic Hydrogels
E-mail:
Horseradish peroxidase (HRP)-catalyzed in situ forming hydrogel systems—with their tunable gelation rate and mechanical properties—have wide applications in biomedicine. HRP has moderate substrate specificity that can be tuned easily by changing the precursor reactants, among which phenol-conjugated polymers are the most studied. In this study, we investigated the relationship between the functional groups on the polymer chains and the properties of the crosslinked hydrogels produced by HRP. As phenols and catechols have similar structures, we conjugated 4-arm poly(propylene oxide)-poly(ethylene oxide) (tetronic) derivatives with catecholamine (dopamine hydrochloride, DA) and phenylamine (tyramine, TA). We prepared tetronic-dopamine (TDA) and tetronic-tyramine (TTA) hydrogels by mixing an aqueous solution of TDA and TTA with HRP in the presence of hydrogen peroxide (H2O2) and characterized and systematically compared their gelation properties: gelation rate, mechanical strength, swelling ratio, adhesive strength, and cellular activity. The gelation pathways of TDA and TTA were similar, and their gelation properties were well controlled by varying the HRP and H2O2 concentrations. Despite their similar molecular structures, the TDA hydrogels showed lower crosslinking densities but superior adhesive strength than the TTA hydrogels at the same HRP and H2O2 concentrations. Neither hydrogel showed cytotoxicity toward encapsulated human dermal fibroblast cells.
  1. Yu L, Ding J, Chem. Soc. Rev., 37, 1473 (2008)
  2. Li J, Mooney DJ, Nat. Rev. Mater., 1, 16071 (2016)
  3. Jin R, Hiemstra C, Zhong Z, Feijen J, Biomaterials, 28, 2791 (2007)
  4. Hoffman AS, Adv. Drug Deliv. Rev., 64, 18 (2012)
  5. Gupta D, Tator CH, Shoichet MS, Biomaterials, 27, 2370 (2006)
  6. Burdick JA, Chung C, Jia X, Randolph MA, Langer R, Biomacromolecules, 6, 386 (2005)
  7. Shu XZ, Liu Y, Palumbo FS, Luo Y, Prestwich GD, Biomaterials, 25, 1339 (2004)
  8. Lee F, Chung JE, Kurisawa M, Soft Matter, 4, 880 (2008)
  9. Kurisawa M, Lee F, Wang LS, Chung JE, J. Mater. Chem., 20, 5371 (2010)
  10. Park KM, Shin YM, Joung YK, Shin H, Park KD, Biomacromolecules, 11, 706 (2010)
  11. Thi PL, Son JY, Lee Y, Ryu SB, Park KM, Park KD, Macromol. Res., 28, 400 (2020)
  12. Thi TTH, Lee Y, Thi PL, Park KD, Macromol. Res., 27, 811 (2019)
  13. Lee Y, Bae JW, Oh DH, Park KM, Chun YW, Sung HJ, Park KD, J. Mater. Chem. B, 1, 2407 (2013)
  14. Yu M, Hwang J, Deming TJ, J. Am. Chem. Soc., 121, 5825 (1999)
  15. Barrett DG, Bushnell GG, Messersmith PB, Adv. Healthcare Mater., 2, 745 (2013)
  16. Lee H, Dellatore SM, Miller WM, Messersmith PB, Science, 318, 426 (2007)
  17. Sever MJ, Weisser JT, Monahan J, Srinivasan S, Wilker JJ, Angew. Chem.-Int. Edit., 43, 448 (2004)
  18. Hou J, Li C, Guan Y, Zhang Y, Zhu XX, Polym. Chem., 6, 2204 (2015)
  19. Chen W, Wang R, Xu T, Ma X, Yao Z, Chi B, Xu H, J. Mater. Chem. B, 5, 5668 (2017)
  20. Wang R, Li J, Chen W, Xu T, Yun S, Xu Z, Xu Z, Sato T, Chi B, Xu H, Adv. Funct. Mater., 27, 1604894 (2017)
  21. Park KM, Jun I, Joung YK, Shin H, Park KD, Soft Matter, 7, 986 (2011)
  22. Joung YK, You SS, Park KM, Go DH, Park KD, Colloids Surf. B: Biointerfaces, 99, 102 (2012)
  23. Buchanan ID, Nicell JA, Biotechnol. Bioeng., 54, 251 (1997)
  24. Shi C, He Y, Feng X, Fu D, J. Biomater. Sci.-Polym. Ed., 26, 111 (2015)
  25. Fan Z, Zhang Y, Zhang W, Li X, J. Appl. Polym. Sci., 132, 42301 (2015)
  26. Lee BP, Dalsin JL, Messersmith PB, Biomacromolecules, 3, 1038 (2002)
  27. Kim K, Ryu JH, Lee DY, Lee H, Biomater. Sci., 1, 783 (2013)
  28. Strehin I, Nahas Z, Arora K, Nguyen T, Elisseeff J, Biomaterials, 31, 2788 (2010)
  29. He T, Shi ZL, Fang N, Neoh KG, Kang ET, Chan V, Biomaterials, 30, 317 (2009)
  30. Mian SA, Saha LC, Jang J, Wang L, Gao X, Nagase S, J. Phys. Chem. C, 114, 48 (2010)
  31. Brubaker CE, Messersmith PB, Langmuir, 28, 2200 (2012)
  32. Matos-Pérez CR, Wilker JJ, Macromolecules, 45, 6634 (2012)
  33. Shin J, Lee JS, Lee C, Park HJ, Yang K, Jin Y, Ryu JH, Hong KS, Moon SH, Chung HM, Yang HS, Um SH, Oh JW, Kim DI, Lee H, Cho SW, Adv. Funct. Mater., 25, 3814 (2015)
  34. Teixeira LSM, Bijl S, Pully VV, Otto C, Jin R, Feijen J, Blitterswijk CA, Dijkstr PJ, Karperien M, Biomaterials, 33, 3164 (2012)
  35. McDermott MK, Chen T, Williams CM, Markley KM, Payne GF, Biomacromolecules, 5, 1270 (2004)
  36. Alvarez-Lorenzo C, Rey-Rico A, Brea J, Loza MI, Concheiro A, Sosnik A, Nanomedicine, 5, 1371 (2010)
  37. Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D, Adv. Mater., 25, 653 (2013)
  38. Ren Y, Zhao X, Liang X, Ma PX, Guo B, Int. J. Biol. Macromol., 105, 1079 (2017)
  39. Fullenkamp DE, Rivera JG, Gong YK, Lau KHA, He L, Varshney R, Messersmith PB, Biomaterials, 33, 3783 (2012)