화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.4, 876-886, April, 2022
Study on the performance of different discharging devices of a continuous production system
E-mail:
Based on the developed continuous production system of sodium phenol carboxylation reaction, several types of discharging devices are proposed, which are suitable for the case where the transported particles are not easy to maintain a stable state in the transported fluid. Numerical simulations of the gas-solid two-phase flow characteristics and particle distribution were performed with DPM, and the particle retention ratio and fluid loss degree were proposed to investigate the performance of the discharging devices. The results of simulations and industrial experiments showed that a guide plate installed in the “B” discharging device can solve the accumulation problem, realize the efficient and continuous delivery of the particles, and maintain a uniform distribution of particles. This study can provide a reference for the design of a gas-solid two-phase discharging device, and guide the industrial experimental operation and modification of continuous production systems for sodium phenol carboxylation.
  1. Devani Y, Yelamarthi PS, J. Food Process. Eng., 42 (2019)
  2. Strenzke G, Dürr R, Bück A, Tsotsas E, Powder Technol., 375, 210 (2020)
  3. Duan ZY, Sun SJ, Lan ZJ, Wang Y, Zhang JM, Wang JT, Powder Technol., 372, 428 (2020)
  4. Geldart D, Powder Technol., 7, 285 (1973)
  5. Jin Y, Lu HF, Guo XL, Gong X, Chem. Eng. Sci., 205, 319 (2019)
  6. Tripathi NM, Santo N, Levy A, Kalman H, Powder Technol., 345, 190 (2019)
  7. Sun D, Powder Technol., 390, 354 (2021)
  8. Gomes LM, Mesquita ALA, Chem. Eng. Sci., 104, 780 (2013)
  9. Matsumoto S, Kikuta M, Maeda S, J. Chem. Eng. Jpn., 10, 273 (1977)
  10. Narimatsu CP, Ferreira MC, Brazil. J. Chem. Eng., 18, 221 (2001)
  11. Heinl E, Bohnet M, Chem. Eng. Technol., 27, 1143 (2004)
  12. Laín S, Sommerfeld M, Int. J. Multiph. Flow, 39, 105 (2012)
  13. Chen XP, Fan CL, Liang C, Pu WH, Lu P, Korean J. Chem. Eng., 24, 499 (2007)
  14. Liang C, Chen XP, Zhao CS, Pu WH, Lu P, Korean J. Chem. Eng., 26, 867 (2009)
  15. Liu B, Wu ZD, Yin GC, Liu JX, Mod. Manuf. Eng., 03, 93 (2018)
  16. Orozovic O, Lavrinec A, Alkassar Y, Chen J, Williams K, Jones MG, Klinzing GE, Powder Technol., 364, 218 (2020)
  17. Wang YF, Heibei Univ. Technol. (2018).
  18. Hong WP, Wang BH, Liu Y, Li HR, Powder Technol., 375, 233 (2020)
  19. Sharma K, Mallick SS, Mittal A, Powder Technol., 362, 707 (2020)
  20. Yang Y, Zhang P, He LL, Sun JY, Huang ZL, Wang JD, Yang YR, Chem. Eng. Sci., 211, 115260 (2020)
  21. Zhang P, Yang Y, Huang ZL, Sun ZY, Liao ZW, Wang JD, Yang YR, Chem. Eng. Sci., 229, 116083 (2020)
  22. Xiong YJ, Guo XL, Gong X, Huang WJ, Zhao JC, Lu HF, CIESC J., 60, 1421 (2009)
  23. Zhou JW, Han XM, Jing SX, Liu Y, Chem. Eng. Res. Des., 157, 92 (2020)
  24. Bansal A, Mallick SS, Wypych PW, Part. Sci. Technol., 31, 348 (2013)
  25. Li H, Tomita Y, Powder Technol., 107, 144 (2000)
  26. Holmas H, Chem. Eng. Sci., 65, 1811 (2010)
  27. Hadziahmetovic H, Hodzic N, Kahrimanovic D, Dzaferovic E, Teh. Vjesn., 21, 275 (2014)