Polymer(Korea), Vol.46, No.2, 275-280, March, 2022
무정형 전구체를 통한 도세탁셀 나노결정의 형성
Docetaxel Nanocrystals Produced via an Amorphous Precursor
E-mail:,
초록
Taxane계 항암제인 도세탁셀은 낮은 용해도와 투과도로 인해 유기 용매에 녹인 형태로 정맥 주사에 사용된다. 높은 함량의 부형제는 전신 과민증, 심혈관 부작용 등을 유발할 수 있어서, 부형제 함량을 줄이는 나노결정 제제가 연구되고 있다. 본 연구의 도세탁셀 나노입자 제조에서 입자 크기와 크기 분포를 기준으로 최적화된 공정은 상분리 와 고압균질화를 결합한 형태였다. 도세탁셀을 1-tetradecanol 매트릭스에 poly(vinyl pyrrolidone)과 같이 녹인 후 냉 각 상분리하여 무정형 나노 전구체를 얻었으며, 전구체를 고압균질화를 통해 수분산하여 약 200 nm의 나노결정을 제조하였다. 암세포 cluster가 도입된 chicken chorioallantoic membrane을 활용하여 도세탁셀 나노입자를 시험한 결 과, 주변 정상 조직에 대한 확연한 손상을 보이지 않으면서 암 조직 크기의 유의미한 감소가 관측되었다.
Docetaxel is an anti-cancer medication in the taxane family administered intravenously due to its low aqueous solubility and gastrointestinal permeability. The current commercial formulation contains a substantial amount of solubilizing excipients that could cause systemic anaphylaxis and cardiovascular side effects. Nanocrystal formulation is an ideal alternative to circumvent excipient-related problems, and it could also take advantage of the defective vascular architecture of solid tumors through enhanced permeability and retention. In the present study, we combined phase separation and high-pressure homogenization processes to generate docetaxel nanocrystals (ca. 200 nm). The initial phase separation of docetaxel from the solution with 1-tetradecanol produced an amorphous nano-precursor in the presence of poly(vinyl pyrrolidone), which was subsequently transformed into the nanocrystals during the high-pressure homogenization. The nanocrystals exhibited a promising anti-cancer effect with minimal damage to normal tissue when tested with a chicken chorioallantoic membrane model.
Keywords:docetaxel;nanocrystal;amorphous precursor;poly(vinyl pyrrolidone);enhanced permeability and retention
- Sulkes A, Smyth J, Sessa C, Dirix LY, Vermorken JB, Kaye S, Wanders J, Franklin H, LeBail N, Verweij J, Br. J. Cancer, 70, 380 (1994)
- Fossella FV, Lee JS, Shin DM, Calayag M, Huber M, Perez-Soler R, Murphy WK, Lippman S, Benner S, Glisson B, J. Clin. Oncol., 13, 645 (1995)
- Sanofi. Taxotere®: Prescribing Information. https://products.sanofi.us/Taxotere/taxotere.html (accessed Dec 20, 2021).
- Engels FK, Mathot RAA, Verweij J, Anti-Cancer Drugs, 18, 95 (2007)
- Naguib YW, Rodriguez BL, Li X, Hursting SD, Williams RO III, Cui Z, Mol. Pharmaceutics, 11, 1239 (2014)
- Couillaud BM, Espeau P, Mignet N, Corvis Y, ChemMedChem, 14, 8 (2019)
- Maeda H, Wu J, Sawa T, Matsumura Y, Hori K, J. Control. Release, 65, 271 (2000)
- Taurin S, Nehoff H, Greish K, J. Control. Release, 164, 265 (2012)
- Hollis CP, Weiss HL, Leggas M, Evers BM, Gemeinhart RA, Li T, J. Control. Release, 172, 12 (2013)
- Liu F, Park JY, Zhang Y, Conwell C, Liu Y, Bathula SR, Huang L, J. Pharm. Sci., 99, 3542 (2010)
- Fuhrmann K, Pozomska A, Aeberli C, Castagner B, Gauthier MA, Leroux JC, ACS Nano., 7, 8243 (2013)
- Pawar VK, Gupta S, Singh Y, Meher JG, Sharma K, Singh P, Gupta A, Bora HK, Chaurasia M, Chourasia MK, J. Biomed. Nanotechnol., 11, 1747 (2015)
- Choi J, Ko E, Chung HK, Lee JH, Ju EJ, Lim HK, Park I, Kim KS, Lee JH, Son WC, Lee JS, Jung J, Int. J. Nanomed., 10, 6121 (2015)
- Galichet LY, Myristyl alcohol. In Handbook of Pharmaceutical Excipients, 6th ed.; Rowe RC, Sheskey PJ, Quinn ME, Eds.; Pharmaceutical Press: London, pp 456-457, 2009.
- Code of Federal Regulations Title 21: Food and Drugs.
- Jeong JH, Chan V, Cha C, Zorlutuna P, Dyck C, Hsia KJ, Bashir R, Kong H, Adv. Mater., 24, 58 (2012)
- Weiswald LB, Bellet D, Vorginie DM, Neoplasia, 17, 1 (2015)
- Zaske L, Perrin MA, Daiguebonne C, Guillou O, Mater. Sci. Forum, 443, 411 (2004)
- Kim IW, Adv. Mater., 15, 709 (2003)