화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.108, 484-492, April, 2022
Enhancement of the cycling stability of lithium-sulfur batteries by using a reactive additive for blocking dissolution of lithium polysulfides
E-mail:
Hexamethylene diisocyanate was employed as a reactive additive to capture lithium polysulfides formed at the cathode of lithium-sulfur batteries. Unlike other solid additives used to trap polysulfides through physical and chemical interactions, it could effectively capture lithium polysulfides through chemical reaction between hexamethylene diisocyanate and lithium polysulfides at the electrode–electrolyte interface. A small amount of hexamethylene diisocyanate was enough to completely block the dissolution of lithium polysulfides into liquid electrolyte due to its high chemical reactivity, which enhanced the cycling stability of the lithium-sulfur battery while maintaining its high energy density. Our results demonstrate that the addition of hexamethylene diisocyanate to liquid electrolyte can provide an efficient strategy to address dissolution of lithium polysulfides and achieve good cycling stability in the high energy–density lithium-sulfur batteries.
  1. Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18, 252 (2015)
  2. Armand M, Tarascon JM, Nature, 451, 652 (2008)
  3. Tarascon JM, Armand M, Nature, 414, 359 (2001)
  4. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D, Energy Environ. Sci., 4, 3243 (2011)
  5. Goodenough JB, Kim Y, Chem. Mater., 22, 587 (2010)
  6. Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM, Nat. Mater., 11, 19 (2012)
  7. Evers S, Nazar LF, Acc. Chem. Res., 46, 1135 (2013)
  8. Tang Y, Huang Y, Luo L, Fan D, Lu Y, Manthiram A, Electrochim. Acta, 367, 137482 (2021)
  9. Song H, Suh S, Park H, Jang D, Kim J, Kim HJ, J. Ind. Eng. Chem., 99, 309 (2021)
  10. Ponraj R, Kannan AG, Ahn JH, Kim DW, ACS Appl. Mater. Interfaces, 8, 4000 (2016)
  11. Ponraj R, Kannan AG, Ahn JH, Lee JH, Kang J, Han B, Kim DW, ACS Appl. Mater. Interfaces, 9, 38445 (2017)
  12. Lee DH, Ahn JH, Park MS, Eftekhari A, Kim DW, Electrochim. Acta, 283, 1291 (2018)
  13. Kumar GG, Chung SH, Kumar TR, Manthiram A, ACS Appl. Mater. Interfaces, 10, 20627 (2018)
  14. Lee SY, Choi Y, Kim JK, Lee SJ, Bae JS, Jeong ED, J. Ind. Eng. Chem., 94, 272 (2021)
  15. Ahn JH, Veerasubramani GK, Lee SM, You TS, Kim DW, J. Electrochem. Soc., 166, A5201 (2019)
  16. Pang Q, Kwok CY, Kundu D, Liang X, Nazar LF, Joule, 3, 136 (2018)
  17. Cuisinier M, Cabelguen PE, Adams BD, Garsuch A, Balasubramanian M, Nazar LF, Energy Environ. Sci., 7, 2697 (2014)
  18. See KA, Wu HL, Lau KC, Shin M, Cheng L, Balasubramanian M, Gallagher KG, Curtiss LA, Gewirth AA, ACS Appl. Mater. Interfaces, 8, 34360 (2016)
  19. Lee CW, Pang Q, Ha S, Cheng L, Han SD, Zavadil KR, Gallagher KG, Nazar LF, Balasubramanian M, ACS Cent. Sci., 3, 605 (2017)
  20. Liu M, Zhou D, He YB, Fu Y, Qin X, Miao C, Du H, Li B, Yang QH, Lin Z, Zhao TS, Kang F, Nano Energy, 22, 278 (2016)
  21. Liu M, Ren Y, Zhou D, Jiang H, Kang F, Zhao T, A.C.S. Appl, Mater. Interfaces, 9, 2526 (2017)
  22. Choi JW, Kim JH, Cheruvally G, Ahn JH, Kim KW, Ahn HJ, Kim JU, J. Ind. Eng. Chem., 12, 939 (2006)
  23. Hagen M, Schiffels P, Hammer M, Dorfler S, Tubke J, Hoffmann MJ, Althues H, Kaskel S, J. Electrochem. Soc., 160, A1205 (2013)
  24. Mishra AK, Chattopadhyay DK, Sreedhar B, Raju KVSN, Prog. Org. Coat., 55, 231 (2006)
  25. Nasar AS, Libni G, RSC Adv., 7, 34149 (2017)
  26. Ederer J, Janos P, Ecorchard P, Tolasz J, Stengl V, Benes H, Perchacz M, Pop-Georgievski O, RSC Adv., 7, 34149 (2017)
  27. Calam TT, Electroanalysis, 32, 149 (2020)
  28. Chen YC, Tai W, Polymer, 10, 1100 (2018)
  29. Tsyganenko AA, Can F, Travert A, Mauge F, Appl. Catal. A: Gen., 268, 189 (2004)
  30. Smith M, Bardiau M, Brennan R, Burgess H, Caplin J, Ray S, Urios T, NPJ Mater. Degrad., 3, 37 (2019)
  31. Wu HL, Shin M, Liu YM, See KA, Gewirth AA, Nano Energy, 32, 50 (2017)
  32. Nicol EA, Baron JY, Mirza J, Leitch JJ, Choi Y, Lipkowski J, J. Solid State Chem., 18, 1469 (2014)
  33. Lin Z, Liu Z, Fu W, Dudney NJ, Liang C, Angew. Chem.-Int. Edit., 52, 7460 (2013)
  34. Zou Q, Lu YC, J. Phys. Chem. Lett., 7, 1518 (2016)
  35. Cuisinier M, Hart C, Balasubramanian M, Garsuch A, Nazar LF, Adv. Energy Mater., 5, 1401801 (2015)
  36. Gobbo P, Mossman Z, Nazemi A, Niaux A, Biesinger MC, Gillies ER, Workentin MS, J. Mater. Chem. B, 2, 1764 (2014)
  37. Jung Y, Kang B, Phys. Chem. Chem. Phys., 18, 21500 (2016)
  38. Markevich E, Salitra G, Talyosef Y, Chesneau F, Aurbach D, J. Electrochem. Soc., 164, A6244 (2017)
  39. Mohtasebi A, Chowdhury T, Hsu LHH, Biesinger MC, Kruse P, J. Phys. Chem. C, 120, 29248 (2016)
  40. Lei T, Xie Y, Wang X, Miao S, Xiong J, Yan C, Small, 13, 1701013 (2017)
  41. Wu S, Wang J, Song S, Xia DH, Zhang Z, Gao Z, Wang J, Jin W, Hu W, J. Electrochem. Soc., 164, C94 (2017)
  42. Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar F, Nat. Commun., 6, 5682 (2015)
  43. Kim H, Lee J, Ahn H, Kim O, Park MJ, Nat. Commun., 6, 7278 (2015)
  44. Cazaux J, J. Electron. Spectrosc. Relat. Phenom., 105, 155 (1999)
  45. Greczynski G, Hultman L, Prog. Mater. Sci., 107, 100591 (2020)