화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 436-443, March, 2022
Influence of crosslinking in phosphoric acid-doped poly(phenylene oxide) membranes on their proton exchange membrane properties
E-mail:,
Phosphoric acid (PA)-doped membranes are promising electrolytes for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). However, long-term durability issues have been an obstacle to their commercialization. Herein, we report a series of poly(phenylene oxide) (PPO)-based crosslinked membranes containing quaternary ammonium (QA) groups and exhibiting enhanced physicochemical stability and PA retention via ion-pair interactions between QA and PA. The degree of crosslinking in PPO by diamine crosslinker was controlled at 20, 30, and 40. The membranes were also crosslinked (degree = 20) using diamine crosslinkers with variable alkyl chain length (ethyl, butyl, and hexyl). All membranes exhibited sufficient thermal stability (5% weight loss temperatures (TD5%) = ∼230 °C) and oxidative stability (∼85% in the Fenton test). The PA uptake of the resulting membranes was controlled between 110 and 154% depending on their crosslinked structures. The membrane with the lowest degree of crosslinking (20) and shortest crosslinker exhibited the highest PA uptake and highest anhydrous proton conductivity (0.043 S/cm at 150 °C) in doped state. The proton conductivity was found to be significantly influenced by the PA uptake and crosslinked membrane structures. The highest PA retention of 89% was exhibited by the PA-doped membrane with the highest degree of crosslinking (40).
  1. Araya SS, Zhou F, Liso V, Sahlin SL, Vang JR, Thomas S, Gao X, Jeppesen C, Kaer SK, Int. J. Hydrog. Energy, 41, 21310 (2016)
  2. Li Q, Jensen JO, Savinell RF, Bjerrum NJ, Prog. Polym. Sci, 34, 449 (2009)
  3. Min CM, Lee SB, Ahn MK, Jang J, Lee JS, J. Polym. Sci. A: Polym. Chem., 57, 1180 (2019)
  4. Zhang L, Jin H, Shen C, Gao S, Chem. Phys., 532 (2020)
  5. Zhou Z, Li S, Zhang Y, Liu M, Li W, J. Am. Chem. Soc., 127, 10824 (2005)
  6. Granados-Focil S, Woudenberg RC, Yavuzcetin O, Tuominen MT, Coughlin EB, Macromolecules, 40, 8708 (2007)
  7. Jang J, Kim DH, Min CM, Pak C, Lee JS, J. Membr. Sci., 605 (2020)
  8. Paddison SJ, Kreuer KD, Maier J, Phys. Chem. Chem. Phys., 8, 4530 (2006)
  9. Lee KS, Spendelow JS, Choe YK, Fujimoto C, Kim YS, Nat. Energy, 1 (2016)
  10. Bandlamudi G, Systematic characterization of HT PEMFCs Containing PBI/ H_3PO_4systems: Thermodynamic analysis and Experimental investigations, Logos Verlag 2011
  11. Kwon K, Kim TY, Yoo DY, Hong SG, Park JO, J. Power Sources, 188, 463 (2009)
  12. Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS, J. Membr. Sci., 595 (2020)
  13. Pu H, Liu L, Chang Z, Yuan J, Electrochim. Acta, 54, 7536 (2009)
  14. Devrim Y, Devrim H, Eroglu I, Int. J. Hydrog. Energy, 41, 10044 (2016)
  15. Lee S, Seo K, Ghorpade RV, Nam KH, Han H, Mater. Lett., 263 (2020)
  16. Yusoff YN, Loh KS, Wong WY, Daud WRW, Lee TK, Int. J. Hydrog. Energy, 45, 27510 (2020)
  17. Son TY, Kim DJ, Vijayakumar V, Kim K, Kim DS, Nam SY, J. Ind. Eng. Chem., 89, 175 (2020)
  18. Sung S, Mayadevi T, Chae JE, Kim HJ, Kim TH, J. Ind. Eng. Chem., 81, 124 (2020)
  19. Ryu J, Seo JY, Choi BN, Kim WJ, Chung CH, J. Ind. Eng. Chem., 73, 254 (2019)
  20. Jang J, Ahn MK, Lee SB, Min CM, Kang BG, Lee JS, Macromol. Res., 29, 157 (2021)
  21. Chen J, Guan M, Li K, Tang S, J. Ind. Eng. Chem., 94, 465 (2021)
  22. Yang J, Jiang H, Gao L, Wang J, Ye N, Xu Y, He R, J. Polym. Sci. A: Polym. Chem., 9, 5462 (2018)
  23. Lee AS, Choe YK, Matanovic I, Kim YS, J. Mater. Chem. A, 7, 9867 (2019)
  24. Lee SB, Min CM, Jang J, Lee JS, Polymer, 192 (2020)
  25. Wu L, Xu T, J. Membr. Sci., 322, 286 (2008)
  26. Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner M, J. Polym. Sci. A: Polym. Chem., 7, 2464 (2016)
  27. Zeng L, Zhao T, J. Power Sources, 303, 354 (2016)
  28. Paajanen A, Vaari J, Verho T, Polymer, 171, 80 (2019)
  29. Shim SE, Yashin VV, Isayev AI, Green Chem., 6, 291 (2004)
  30. Ma W, Zhao C, Yang J, Ni J, Wang S, Zhang N, Lin H, Wang J, Zhang G, Li Q, Na H, Energy Environ. Sci., 5, 7617 (2012)
  31. Celik S, Aslan A, Bozkurt A, Solid State Ion., 179, 683 (2008)
  32. Krishnan NN, Joseph D, Duong NMH, Konovalova A, Jang JH, Kim HJ, Nam SW, Henkensmeier D, J. Membr. Sci., 544, 416 (2017)
  33. Chen N, Long C, Li Y, Lu C, Zhu H, ACS Appl. Mater. Interfaces, 10, 15720 (2018)
  34. Bozkurt A, Ise M, Kreuer K, Meyer WH, Wegner G, Solid State Ion., 125, 225 (1999)
  35. Guin M, Patwari GN, Karthikeyan S, Kim KS, Phys. Chem. Chem. Phys., 13, 5514 (2011)
  36. Hu EN, Lin CX, Liu FH, Yang Q, Li L, Zhang QG, Zhu AM, Liu QL, ACS Appl. Energy Mater., 1, 3479 (2018)
  37. Mun J, Wang GJN, Oh JY, Katsumata T, Lee FL, Kang J, Wu HC, Lissel F, Rondeau-Gagne S, Tok JBH, Adv. Funct. Mater., 28, 1804222 (2018)
  38. Melenbrink EL, Hilby KM, Choudhary K, Samal S, Kazerouni N, McConn JL, Lipomi DJ, Thompson BC, ACS Appl. Polym. Mater., 1, 1107 (2019)
  39. Jang J, Kim DH, Kang B, Lee JH, Pak C, Lee JS, ACS Appl. Mater. Interfaces, 13, 531 (2021)
  40. Hasiotis C, Qingfeng L, Deimede V, Kallitsis JK, Kontoyannis CG, Bjerrum NJ, J. Electrochem. Soc., 148, A513 (2001)
  41. Li X, Chen X, Benicewicz BC, J. Power Sources, 243, 796 (2013)
  42. Cui Z, Xiang Y, Si J, Yang M, Zhang Q, Zhang T, Carbohydr. Polym., 73, 111 (2008)
  43. Farrukh A, Ashraf F, Kaltbeitzel A, Ling X, Wagner M, Duran H, Ghaffar A, Rehman HU, Parekh SH, Domke KF, J. Polym. Sci. A: Polym. Chem., 6, 5782 (2015)
  44. Hong L, Wang B, Zhao C, Appl. Surf. Sci., 483, 785 (2019)
  45. Ma W, Zhao C, Lin H, Zhang G, Ni J, Wang J, Wang S, Na H, J. Power Sources, 196, 9331 (2011)
  46. Yang J, Li Q, Jensen JO, Pan C, Cleemann LN, Bjerrum NJ, He R, J. Power Sources, 205, 114 (2012)
  47. Zhang N, Wang B, Zhao C, Wang S, Zhang Y, Bu F, Cui Y, Li X, Na H, J. Mater. Chem. A, 2, 13996 (2014)
  48. Yang J, Wang J, Liu C, Gao L, Xu Y, Che Q, He R, J. Membr. Sci., 493, 80 (2015)