Journal of Industrial and Engineering Chemistry, Vol.107, 436-443, March, 2022
Influence of crosslinking in phosphoric acid-doped poly(phenylene oxide) membranes on their proton exchange membrane properties
E-mail:,
Phosphoric acid (PA)-doped membranes are promising electrolytes for high-temperature proton exchange membrane fuel cells (HT-PEMFCs). However, long-term durability issues have been an obstacle to their commercialization. Herein, we report a series of poly(phenylene oxide) (PPO)-based crosslinked membranes containing quaternary ammonium (QA) groups and exhibiting enhanced physicochemical stability and PA retention via ion-pair interactions between QA and PA. The degree of crosslinking in PPO by diamine crosslinker was controlled at 20, 30, and 40. The membranes were also crosslinked (degree = 20) using diamine crosslinkers with variable alkyl chain length (ethyl, butyl, and hexyl). All membranes exhibited sufficient thermal stability (5% weight loss temperatures (TD5%) = ∼230 °C) and oxidative stability (∼85% in the Fenton test). The PA uptake of the resulting membranes was controlled between 110 and 154% depending on their crosslinked structures. The membrane with the lowest degree of crosslinking (20) and shortest crosslinker exhibited the highest PA uptake and highest anhydrous proton conductivity (0.043 S/cm at 150 °C) in doped state. The proton conductivity was found to be significantly influenced by the PA uptake and crosslinked membrane structures. The highest PA retention of 89% was exhibited by the PA-doped membrane with the highest degree of crosslinking (40).
Keywords:High-temperature proton exchange membranes;Phosphoric acid;Quaternary ammonium;Ion-pair interaction;Crosslinking
- Araya SS, Zhou F, Liso V, Sahlin SL, Vang JR, Thomas S, Gao X, Jeppesen C, Kaer SK, Int. J. Hydrog. Energy, 41, 21310 (2016)
- Li Q, Jensen JO, Savinell RF, Bjerrum NJ, Prog. Polym. Sci, 34, 449 (2009)
- Min CM, Lee SB, Ahn MK, Jang J, Lee JS, J. Polym. Sci. A: Polym. Chem., 57, 1180 (2019)
- Zhang L, Jin H, Shen C, Gao S, Chem. Phys., 532 (2020)
- Zhou Z, Li S, Zhang Y, Liu M, Li W, J. Am. Chem. Soc., 127, 10824 (2005)
- Granados-Focil S, Woudenberg RC, Yavuzcetin O, Tuominen MT, Coughlin EB, Macromolecules, 40, 8708 (2007)
- Jang J, Kim DH, Min CM, Pak C, Lee JS, J. Membr. Sci., 605 (2020)
- Paddison SJ, Kreuer KD, Maier J, Phys. Chem. Chem. Phys., 8, 4530 (2006)
- Lee KS, Spendelow JS, Choe YK, Fujimoto C, Kim YS, Nat. Energy, 1 (2016)
- Bandlamudi G, Systematic characterization of HT PEMFCs Containing PBI/ H_3PO_4systems: Thermodynamic analysis and Experimental investigations, Logos Verlag 2011
- Kwon K, Kim TY, Yoo DY, Hong SG, Park JO, J. Power Sources, 188, 463 (2009)
- Jang J, Kim DH, Ahn MK, Min CM, Lee SB, Byun J, Pak C, Lee JS, J. Membr. Sci., 595 (2020)
- Pu H, Liu L, Chang Z, Yuan J, Electrochim. Acta, 54, 7536 (2009)
- Devrim Y, Devrim H, Eroglu I, Int. J. Hydrog. Energy, 41, 10044 (2016)
- Lee S, Seo K, Ghorpade RV, Nam KH, Han H, Mater. Lett., 263 (2020)
- Yusoff YN, Loh KS, Wong WY, Daud WRW, Lee TK, Int. J. Hydrog. Energy, 45, 27510 (2020)
- Son TY, Kim DJ, Vijayakumar V, Kim K, Kim DS, Nam SY, J. Ind. Eng. Chem., 89, 175 (2020)
- Sung S, Mayadevi T, Chae JE, Kim HJ, Kim TH, J. Ind. Eng. Chem., 81, 124 (2020)
- Ryu J, Seo JY, Choi BN, Kim WJ, Chung CH, J. Ind. Eng. Chem., 73, 254 (2019)
- Jang J, Ahn MK, Lee SB, Min CM, Kang BG, Lee JS, Macromol. Res., 29, 157 (2021)
- Chen J, Guan M, Li K, Tang S, J. Ind. Eng. Chem., 94, 465 (2021)
- Yang J, Jiang H, Gao L, Wang J, Ye N, Xu Y, He R, J. Polym. Sci. A: Polym. Chem., 9, 5462 (2018)
- Lee AS, Choe YK, Matanovic I, Kim YS, J. Mater. Chem. A, 7, 9867 (2019)
- Lee SB, Min CM, Jang J, Lee JS, Polymer, 192 (2020)
- Wu L, Xu T, J. Membr. Sci., 322, 286 (2008)
- Zhu L, Zimudzi TJ, Li N, Pan J, Lin B, Hickner M, J. Polym. Sci. A: Polym. Chem., 7, 2464 (2016)
- Zeng L, Zhao T, J. Power Sources, 303, 354 (2016)
- Paajanen A, Vaari J, Verho T, Polymer, 171, 80 (2019)
- Shim SE, Yashin VV, Isayev AI, Green Chem., 6, 291 (2004)
- Ma W, Zhao C, Yang J, Ni J, Wang S, Zhang N, Lin H, Wang J, Zhang G, Li Q, Na H, Energy Environ. Sci., 5, 7617 (2012)
- Celik S, Aslan A, Bozkurt A, Solid State Ion., 179, 683 (2008)
- Krishnan NN, Joseph D, Duong NMH, Konovalova A, Jang JH, Kim HJ, Nam SW, Henkensmeier D, J. Membr. Sci., 544, 416 (2017)
- Chen N, Long C, Li Y, Lu C, Zhu H, ACS Appl. Mater. Interfaces, 10, 15720 (2018)
- Bozkurt A, Ise M, Kreuer K, Meyer WH, Wegner G, Solid State Ion., 125, 225 (1999)
- Guin M, Patwari GN, Karthikeyan S, Kim KS, Phys. Chem. Chem. Phys., 13, 5514 (2011)
- Hu EN, Lin CX, Liu FH, Yang Q, Li L, Zhang QG, Zhu AM, Liu QL, ACS Appl. Energy Mater., 1, 3479 (2018)
- Mun J, Wang GJN, Oh JY, Katsumata T, Lee FL, Kang J, Wu HC, Lissel F, Rondeau-Gagne S, Tok JBH, Adv. Funct. Mater., 28, 1804222 (2018)
- Melenbrink EL, Hilby KM, Choudhary K, Samal S, Kazerouni N, McConn JL, Lipomi DJ, Thompson BC, ACS Appl. Polym. Mater., 1, 1107 (2019)
- Jang J, Kim DH, Kang B, Lee JH, Pak C, Lee JS, ACS Appl. Mater. Interfaces, 13, 531 (2021)
- Hasiotis C, Qingfeng L, Deimede V, Kallitsis JK, Kontoyannis CG, Bjerrum NJ, J. Electrochem. Soc., 148, A513 (2001)
- Li X, Chen X, Benicewicz BC, J. Power Sources, 243, 796 (2013)
- Cui Z, Xiang Y, Si J, Yang M, Zhang Q, Zhang T, Carbohydr. Polym., 73, 111 (2008)
- Farrukh A, Ashraf F, Kaltbeitzel A, Ling X, Wagner M, Duran H, Ghaffar A, Rehman HU, Parekh SH, Domke KF, J. Polym. Sci. A: Polym. Chem., 6, 5782 (2015)
- Hong L, Wang B, Zhao C, Appl. Surf. Sci., 483, 785 (2019)
- Ma W, Zhao C, Lin H, Zhang G, Ni J, Wang J, Wang S, Na H, J. Power Sources, 196, 9331 (2011)
- Yang J, Li Q, Jensen JO, Pan C, Cleemann LN, Bjerrum NJ, He R, J. Power Sources, 205, 114 (2012)
- Zhang N, Wang B, Zhao C, Wang S, Zhang Y, Bu F, Cui Y, Li X, Na H, J. Mater. Chem. A, 2, 13996 (2014)
- Yang J, Wang J, Liu C, Gao L, Xu Y, Che Q, He R, J. Membr. Sci., 493, 80 (2015)