화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.107, 410-417, March, 2022
Dewetting-driven self-assembly of web-like silver nanowire networked film for highly transparent conductors
Silver nanowire (AgNW) networked films have received much attention as transparent conducting materials owing to their excellent conductivity, high transmittance, and moderate cost. In addition, AgNWs can be easily prepared as dispersions in liquids, enabling solution-based processing. Nevertheless, the fabrication of highly transparent AgNW networked electrodes remains challenging owing to the high percolation threshold of AgNWs. In this study, web-like AgNW networked films were fabricated via the dewetting-driven self-assembly of AgNWs using meniscus-dragging deposition. The dewetting of liquid thin films containing AgNWs was finely tuned by adjusting the ethylene glycol content of an AgNW–isopropyl alcohol dispersion and the surface energy of the coating substrate. The obtained AgNW networked electrodes with self-assembled web-like structures had a significantly lower percolation threshold (0.26 μg cm−2) than randomly networked AgNW electrodes (2.53 μg cm−2), resulting in an outstanding combination of sheet resistance and optical transparency (38 Ω sq−1 at T = 96%). This large scalable one-step coating strategy for metal mesh thin films can advance the development of next-generation transparent conducting electrodes.
  1. Ellmer K, Nat. Photonics, 6, 809 (2012)
  2. Morales-Masis M, De Wolf S, Woods-Robinson R, Ager JW, Ballif C, Adv. Electron. Mater., 3, 1600529 (2017)
  3. Hecht DS, Hu L, Irvin G, Adv. Mater., 23, 1482 (2011)
  4. Ko YU, Cho S, Choi KS, Park Y, Kim ST, Kim NH, Kim SY, Chang ST, J. Mater. Chem., 22, 3606 (2012)
  5. Pang S, Hernandez Y, Feng X, Mullen K, Adv. Mater., 23, 2779 (2011)
  6. Ren W, Cheng HM, Nat. Nanotechnol., 9, 726 (2014)
  7. Ko Y, Kim NH, Lee NR, Chang ST, Carbon, 77, 964 (2014)
  8. Dai H, Acc. Chem. Res., 35, 1035 (2002)
  9. Feng C, Liu K, Wu JS, Liu L, Cheng JS, Zhang Y, Sun Y, Li Q, Fan S, Jiang K, Adv. Funct. Mater., 20, 885 (2010)
  10. Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, Molina-Lopez F, Lissel F, Liu J, Rabiah NI, Chen Z, Chung JW, Linder C, Toney MF, Murmann B, Bao Z, Sci. Adv., 3, e1602076 (2017)
  11. Xia Y, Sun K, Ouyang J, Adv. Mater., 24, 2436 (2012)
  12. Rao KDM, Hunger C, Gupta R, Kulkarni GU, Thelakkat M, Phys. Chem. Chem. Phys., 16, 15107 (2014)
  13. Khan A, Lee S, Jang T, Xiong Z, Zhang C, Tang J, Guo LJ, Li WD, Small, 12, 3021 (2016)
  14. Seo KW, Noh YJ, Na SI, Kim HK, Sol. Energy Mater. Sol. Cells, 155, 51 (2016)
  15. Han S, Chae Y, Kim JY, Jo Y, Lee SS, Kim SH, Woo K, Jeong S, Choi Y, Lee SY, J. Mater. Chem. C, 6, 4389 (2018)
  16. Lee SM, Oh S, Chang ST, ACS Appl. Mater. Interfaces, 11, 4541 (2019)
  17. Ko Y, Song SK, Kim NH, Chang ST, Langmuir, 32, 366 (2016)
  18. Yin Z, Song SK, You DJ, Ko Y, Cho S, Yoo J, Park SY, Piao Y, Chang ST, Kim YS, Small, 11, 4576 (2015)
  19. Krantz J, Richter M, Spallek S, Spiecker E, Brabec CJ, Adv. Funct. Mater., 21, 4784 (2011)
  20. Choi DY, Oh YS, Han D, Yoo S, Sung HI, Kim SS, Adv. Funct. Mater., 25, 3888 (2015)
  21. Cho S, Kang S, Pandya A, Shanker R, Khan Z, Lee Y, Park J, Craig SL, Ko H, ACS Nano, 11, 4346 (2017)
  22. Lee S, Shin S, Lee S, Seo J, Lee J, Son S, Cho HJ, Algadi H, Al-Sayari S, Kim DE, Lee T, Adv. Funct. Mater., 25, 3114 (2015)
  23. Leem DS, Edwards A, Faist M, Nelson J, Bradley DDC, de Mello JC, Adv. Mater., 23, 4371 (2011)
  24. Li W, Zhang H, Shi S, Xu J, Qin X, He Q, Yang K, Dai W, Liu G, Zhou Q, Yu H, Silva SRP, Fahlman M, J. Mater. Chem. C, 8, 4636 (2020)
  25. Selzer F, WeiB N, Kneppe D, Bormann L, Sachse C, Gaponik N, Eychm?ller A, Leo K, Muller-Meskamp L, Nanoscale, 7, 2777 (2015)
  26. Jung SY, Kim JY, Choe G, Choi BS, Kim SJ, An TK, Jeong YJ, Curr. Appl. Phys., 21, 155 (2021)
  27. Bai S, Wang H, Yang H, Zhang H, Chen T, Guo X, RSC Adv., 8, 13466 (2018)
  28. Zhu X, Xu J, Qin F, Yan Z, Guo A, Kan C, Nanoscale, 12, 14589 (2020)
  29. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN, ACS Nano, 3, 1767 (2009)
  30. Zhang Z, Wang H, Li S, Li L, Li D, Compos. Pt. A-Appl. Sci. Manuf., 76, 309 (2015)
  31. Saw MJ, Ghosh B, Nguyen MT, Jirasattayaporn K, Kheawhom S, Shirahata N, Yonezawa T, ACS Omega, 4, 13303 (2019)
  32. Mao Y, Yang H, Hu C, Guo J, Meng X, Yang Y, J. Mater. Sci. -Mater. Med., 28, 5308 (2017)
  33. Yang H, Chen T, Wang H, Bai S, Guo X, Mater. Res. Bull., 102, 79 (2018)
  34. Zhou H, Song Y, Mater. Interfaces, 13, 3493 (2021)
  35. Xiong J, Li S, Ciou JH, Chen J, Gao D, Wang J, Lee PS, Adv. Funct. Mater., 31, 2006120 (2021)
  36. Sciacca B, van de Groep J, Polman A, Garnett EC, Adv. Mater., 28, 905 (2016)
  37. Suh YD, Hong S, Lee J, Lee H, Jung S, Kwon J, Moon H, Won P, Shin J, Yeo J, Ko SH, RSC Adv., 6, 57434 (2016)
  38. Han J, Yang J, Gao W, Bai H, Adv. Funct. Mater., 31, 2010155 (2021)
  39. Wu S, Li L, Xue H, Liu K, Fan Q, Bai G, Wang J, ACS Nano, 11, 9898 (2017)
  40. Hu S, Gu J, Zhao W, Ji H, Ma X, Wei J, Li M, Adv. Mater. Technol., 4, 1900194 (2019)
  41. Chen YR, Hong CC, Liou TM, Hwang KC, Guo TF, Sci. Rep., 7, 16662 (2017)
  42. Elbaum M, Lipson SG, Phys. Rev. Lett., 72, 3562 (1994)
  43. Redon C, Brochard-Wyart F, Rondelez F, Phys. Rev. Lett., 66, 715 (1991)
  44. Landau L, Levich B, Acta Physicochem. USSR, 17, 42 (1942)
  45. Derjaguin BV, Acta Physicochem. USSR, 20, 349 (1943)
  46. White DA, Tallmadge JA, Chem. Eng. Sci., 20, 33 (1965)
  47. Hu L, Hecht DS, Gruner G, Nano Lett., 4, 2513 (2004)
  48. Tenent RC, Barnes TM, Bergeson JD, Ferguson AJ, To B, Gedvilas LM, Heben MJ, Blackburn JL, Adv. Mater., 21, 3210 (2009)
  49. Vosgueritchian M, Lipomi DJ, Bao Z, Adv. Funct. Mater., 22, 421 (2012)
  50. De S, Coleman JN, ACS Nano, 4, 2713 (2010)