화학공학소재연구정보센터
Macromolecular Research, Vol.30, No.2, 146-151, February, 2022
Effect of the Side Chain Functionality of the Conjugated Polyelectrolytes as a Cathode Interlayer Material on the Photovoltaic Performances
E-mail:
The quaternized conjugated polymer based on poly[(9,9-bis(3′-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dihexylfluorene)] (PFN) as cathode interlayer material (CIM) in a polymer solar cell was systematically investigated. The interlayer consists of alternating dihexyl fluorene and dimethyl aminopropyl fluorene backbone. The corresponding quaternized conjugated polyelectrolytes, named PFN salt and PFN-OH salt, were synthesized by introducing quaternized agents, such as bromoethane or bromoethanol, as side chains onto the PFN precursor polymer. Different quaternized agents give the different inducing effects of an interfacial dipole. The structure of inverted polymer solar cells (iPSCs) is ZnO/interlayer/PTB7-Th:PC71BM/MoO3/Ag. The enhancement in the efficiency of the iPSCs was accomplished by introducing a PFN, PFN salt, and PFN-OH salt as the CIM. Modification of side-chain functionality with bromoethanol shows better performances than that with bromoethane as an interlayer.
  1. Li Y, Acc. Chem. Res., 45, 723 (2012)
  2. Zhang W, Wu Y, Bao Q, Gao F, Fang J, Adv. Energy Mater., 4 (2014)
  3. Handoko SL, Jin HC, Whang DR, Kim JH, Chang DW, 86, 244 (2020)
  4. Handoko SL, Jin HC, Whang DR, Putri SK, Kim JH, Chang DW, J. Ind. Eng. Chem., 73, 192 (2019)
  5. Li X, Liu X, Zhang W, Wang HQ, Fang J, Chem. Mater., 29, 4173 (2017)
  6. Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y, J. Am. Chem. Soc., 138, 2004 (2016)
  7. Lv M, Li S, Jasieniak JJ, Hou J, Zhu J, Tan Z, Watkins SE, Li Y, Chen X, Adv. Mater., 25, 6889 (2013)
  8. Brabec BCJ, Cravino A, Meissner D, Sariciftci NS, Fromherz T, Rispens MT, Sanchez L, Hummelen JC, Adv. Funct. Mater.,, 11, 374 (2001)
  9. Reddy SS, Aryal UK, Jin H, Gokulnath T, Rajalapati DG, Kranthiraja K, Shin ST, Jin SH, Macromol. Res., 28, 179 (2020)
  10. Lee S, Ha JW, Park HJ, Hwang DH, Macromol. Res., 903 (2020).
  11. Cha H, Li J, Li Y, Kim SO, Kim YH, Kwon SK, Macromol. Res., 28, 820 (2020)
  12. Rwenyagila ER, Int. J. Photoenergy, 2017, 1 (2017)
  13. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM, Phys. Rev. B, 72, 85205 (2005)
  14. Yu G, Gao J, Hummelen JC, Wudl F,, Heeger AJ, Science, 270(80), 1789 (1995)
  15. Abdullah, Akhtar MS, Kim EB, Fijahi L, Shin HS, Ameen S, J. Ind. Eng. Chem., 81, 309 (2020)
  16. Cheng YJ, Yang SH, Hsu CS, Chem. Rev., 109, 5868 (2009)
  17. Bini K, Xu X, Andersson MR, Wang E, ACS Appl. Energy Mater., 1, 2176 (2018)
  18. Song CE, Ryu KY, Hong SJ, Bathula C, Lee SK, Shin WS, Lee JC, Choi SK, Kim JH, et al., ChemSusChem, 6, 1445 (2013)
  19. Chua L, Zaumseil J, Chang J, Ou EC, Nature, 434, 194 (2005)
  20. Cheng YJ, Hsieh CH, He Y, Hsu CS, Li Y, J. Am. Chem. Soc., 132, 17381 (2010)
  21. Sun Y, Seo JH, Takacs CJ, Seifter J, Heeger AJ, Adv. Mater., 23, 1679 (2011)
  22. Duan C, Zhang K, Zhong C, Huang F, Cao Y, Chem Soc Rev, 42, 9071 (2013)
  23. Chueh C, Li C, Jen AK, energy and, 8, 1160 (2015)
  24. Yip H, Jen AK, Energy Environ. Sci., 5, 5994 (2012)
  25. Do TT, Hong HS, Ha YE, Yoo SI, Won YS, Moon MJ, Kim JH, Macromol. Res., 23, 367 (2015)
  26. Kang R, Oh SH, Kim DY, ACS Appl. Mater. Interfaces, 6, 6227 (2014)
  27. Li G, Zhu R, Yang Y, Nat. Photonics, 6, 153 (2012)
  28. He Z, Zhong C, Huang X, Wong W, Wu H, Adv. Mater., 23, 4636 (2011)
  29. Zhang L, Liu C, Lai T, Huang H, Peng X, Huang F, J. Mater. Chem. A, 4, 15156 (2016)
  30. Li YL, Cheng YS, Yeh PN, Liao SH, Chen SA, Adv. Funct. Mater., 24, 6811 (2014)
  31. Liu Y, Page ZA, Russell TP, Emrick T, Angew. Chemie ? Int. Ed., 54, 11485 (2015)
  32. Seo JH, Gutacker A, Sun Y, Wu H, Huang F, Cao Y, Scherf U, Heeger AJ, Bazan GC, J. Am. Chem. Soc.,, 133, 8416 (2011)
  33. Jeong M, Jin HC, Moon DK, Kim JH, Adv. Mater. Interfaces, 1900797, 1 (2019)
  34. Jeong M, Jin HC, Lee JH, Moon DK, Kim JH, Dye. Pigment., 173, 107927 (2020)
  35. Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J, Energy Environ. Sci., 7, 1966 (2014)
  36. Huang F, Hou L, Shen H, Jiang J, Wang F, Zhen H, Cao Y, J. Mater. Chem., 15, 2499 (2005)
  37. Huang F, Wu H, Wang D, Yang W, Cao Y, Chem. Mater., 16, 708 (2004)
  38. Huang F, Wu H, Peng J, Yang W, Cao Y, Curr. Org. Chem., 11, 1207 (2007)
  39. Zilberberg K, Behrendt A, Kraft M, Scherf U, Riedl T, Org. Electron., 14, 951 (2013)
  40. Bini K, Xu X, Andersson MR, Wang E, ACS Appl. Energy Mater., 1, 2176 (2018)
  41. He Z, Wu H, Cao Y, Adv. Mater., 26, 1006 (2014)
  42. Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, et al., Science, 336(80), 327 (2012)
  43. Van Reenen S, Kouijzer S, Janssen RAJ, Wienk MM, Kemerink M, Adv. Mater Interfaces, 1, 1 (2014)
  44. Wang C, Luo Y, Zheng J, Liu L, Xie Z, Huang F, Yang B, Ma Y, ACS Appl. Mater. Interfaces, 10, 10270 (2018)
  45. Lim KG, Park SM, Woo HY, Lee TW, ChemSusChem, 8, 3062 (2015)
  46. Hu Z, Zhang K, Huang F, Cao Y, Chem. Commun., 51, 5572 (2015)
  47. Ratcliff EL, Zacher B, Armstrong NR, J. Phys. Chem. Lett., 2, 1337 (2011)
  48. Park J, Yang R, Hoven CV, Garcia A, Fischer DA, Nguyen TQ, Bazan GC, Delongchamp DM, Adv. Mater., 20, 2491 (2008)
  49. Jo MY, Do TT, Ha YE, Won YS, Kim JH, Org. Electron., 16, 18 (2015)
  50. Jo MY, Ha YE, Won YS, Yoo SI, Kim JH, Org. Electron., 25, 85 (2015)
  51. SZE SM, Solutions Manual ? Semiconductor devices physics and technoloy (John Wiley and Sons, Inc, New York, 1981).
  52. Waldauf C, Scharber MC, Schilinsky P, Hauch JA, Brabec CJ, J. Appl. Phys., 99 (2006)
  53. He C, Zhong C, Wu H, Yang R, Yang W, Huang F, Bazan GC, Cao Y, J. Mater. Chem., 20, 2617 (2010)
  54. Jia X, Jiang Z, Chen X, Zhou J, Pan L, Zhu F, Sun Z, Huang S, ACS Appl. Mater. Interfaces, 8, 3792 (2016)
  55. Jin HC, Salma SA, Moon DK, Kim JH, J. Mater. Chem. A, 8, 4562 (2020)
  56. Yang F, Xu Y, Gu M, Zhou S, Wang Y, Lu K, Liu Z, Ling X, Zhu Z, et al., J. Mater. Chem. A, 6, 17688 (2018)
  57. Azmi R, Oh SH, Jang SY, ACS Energy Lett., 1, 100 (2016)
  58. Gusain A, Faria RM, Miranda PB, Front. Chem., 7, 61 (2019)
  59. Koster LJA, Mihailetchi VD, Ramaker R, Blom PWM, Appl. Phys. Lett., 86, 1 (2005)
  60. Sun C, Pan F, Chen S, Wang R, Sun R, Shang Z, Qiu B, Min J, Lv M, et al., Adv. Mater., 31, 1 (2019)
  61. Nho S, Baek G, Park S, Lee BR, Cha MJ, Lim DC, Seo JH, Oh SH, Song MH, et al., Energy Environ. Sci., 9, 240 (2016)
  62. Liu H, Huang L, Cheng X, Hu A, Xu H, Chen L, Chen Y, ACS Appl. Mater. Interfaces, 9, 1145 (2017)
  63. Li Y, Li X, Liu X, Zhu L, Zhang W, Fang J, J. Phys. Chem. C, 120, 26244 (2016)
  64. Rainer K, Sastrawan R, Ferber J, Stangl R, Luther J, Electrochim. Acta, 4213, (2002).
  65. Sankar KV, Selvan RK, RSC Adv., 4, 17555 (2014)
  66. Qu Q, Zhang P, Wang B, Chen Y, Tian S, Wu Y, Holze R, J. Phys. Chem. C, 113, 14020 (2009)
  67. Huang Y, Li Y, Hu Z, Wei G, Guo J, Liu J, J. Mater. Chem. A, 1, 9809 (2013)
  68. Toyohisa H, Ryuji K, Kazunari S, Koichi E, Electrochemistry, 70, 675 (2002)