화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.39, No.3, 798-810, March, 2022
Molecular weight distribution modeling of LDPE in a continuous stirred-tankreactor using coupled deterministic and stochastic approach
E-mail:
A hybrid approach that combines the method of moments and Monte Carlo simulation to predict the molecular weight distribution of low-density polyethylene for a continuous stirred tank reactor system is proposed. A ‘Block’, which is repeating reaction group, is introduced for the calculation cost-effective simulation. This model called the ‘block Kinetic Monte Carlo’ is ~10 to 32 times faster than Neuhaus’s model. The model can be applied to any steady state system and provide a calculation cost reduction effect, where one reaction is much faster than others, for example, the propagation reaction. Furthermore, we performed a case study on the effects of the system temperature and initiator concentration on the MWD and reaction rate ratio. Based on the simulation results of 180 case studies, we determined a quantitative guideline for the appearance of shoulder, which is a function of the rate ratio of reactions to the propagation reaction.
  1. Bovey FA, Schilling FC, McCrackin FL, Wagner HL, Macromolecules, 9, 76 (1976)
  2. Beasley JK, J. Am. Chem. Soc., 75, 6123 (1953)
  3. Ray WH, J. Macromol. Sci., Rev. Macromol. Chem., 8, 1 (1972)
  4. Crowley TJ, Choi KY, Ind. Eng. Chem. Res., 36, 1419 (1997)
  5. Iedema PD, Wulkow M, Hoefsloot HC, Macromolecules, 33, 7173 (2000)
  6. Son SH, Han JJ, Lee JM, Polymer, 126, 74 (2017)
  7. Louie BM, Carratt GM, Soong DS, J. Appl. Polym. Sci., 30, 3985 (1985)
  8. Mikos AG, Takoudis CG, Peppas NA, Macromolecules, 19, 2174 (1986)
  9. Zhu S, Hamielec AE, Macromolecules, 22, 3093 (1989)
  10. Zhu S, Hamielec AE, J. Polym. Sci. Part B: Polym. Phys., 32, 929 (1994)
  11. Shin S, Choi S, Na J, Jung I, Kim MK, Park MJ, Lee WB, Chem. Eng. J., 131829,
  12. Wells GJ, Ray WH, Macromol. Mater. Eng., 290, 319 (2005)
  13. Pladis P, Kiparissides CA, Chem. Eng. Sci., 53, 3315 (1998)
  14. Hutchinson RA, Macromol. Theory Simul., 10, 144 (2001)
  15. Zhang SX, Ray WH, AIChE J., 43, 1265 (1997)
  16. Tobita H, J. Polym. Sci., Part B: Polym. Phys., 39, 391 (2001)
  17. Yaghini N, Iedema PD, Chem. Eng. Sci., 116, 144 (2014)
  18. Meimaroglou D, Pladis P, Baltsas A, Kiparissides C, Chem. Eng. Sci., 66, 1685 (2011)
  19. Kim DM, Busch M, Hoefsloot HC, Iedema PD, Chem. Eng. Sci., 59, 699 (2004)
  20. Kiparissides C, Krallis A, Meimaroglou D, Pladis P, Baltsas A, Chem. Eng. Technol., 33, 1754 (2010)
  21. Iedema PD, Hoefsloot HC, Macromol. Theory Simul., 10, 855 (2001)
  22. Kim DM, Iedema PD, Chem. Eng. Sci., 59, 2039 (2004)
  23. Kim DM, Iedema PD, Chem. Eng. Sci., 63, 2035 (2008)
  24. Yaghini N, Iedema PD, Chem. Eng. Sci., 130, 310 (2015)
  25. Gillespie DT, J. Phys. Chem., 81, 2340 (1977)
  26. Tobita H, Macromol. Theory Simul., 5, 129 (1996)
  27. Tobita H, Macromol. React. Eng., 7, 181 (2013)
  28. Tobita H, Macromol. Theory Simul., 23, 182 (2014)
  29. Rogosic M, Mencer HJ, Gomzi Z, Eur. Polym. J., 32, 1337 (1996)
  30. Neuhaus E, Herrmann T, Vittorias I, Lilge D, Mannebach G, Gonioukh A, Busch M, Macromol. Theory Simul., 23, 415 (2014)
  31. Sch?tte C, Wulkow M, Macromol. React. Eng., 4, 562 (2010)
  32. Eckes D, Busch M, Macromol. Symp., 360, 23 (2016)
  33. Meimaroglou D, Kiparissides CA, Macromolecules, 43, 5820 (2010)
  34. Feucht P, Tilger B, Luft G, Chem. Eng. Sci., 40, 1935 (1985)
  35. Tobita H, Processes, 3, 731 (2015)
  36. Chien IL, Kan TW, Chen BS, Comput. Chem. Eng., 31, 233 (2007)
  37. Kotliar AM, J. Polym. Sci., Part A: Gen. Pap., 2, 4303 (1964)
  38. Krallis A, Pladis P, Kiparissides C, Macromol. Theory Simul., 16, 593 (2007)
  39. Kolhapure NH, Fox RO, Chem. Eng. Sci., 54, 3233 (1999)
  40. Marini L, Georgakis C, Chem. Eng. Commun., 30, 361 (1984)