Applied Chemistry for Engineering, Vol.33, No.1, 103-108, February, 2022
아이소소바이드의 효과적 산화반응을 위한 루테늄/템포/나이트레이트 촉매 시스템 개발
Development of Ruthenium/TEMPO/Nitrate Catalyst System for Efficient Oxidation of Isosorbide
E-mail:
초록
본 연구에서는 아이소소바이드(1,4:3,6-dianhydro-D-glucitol)로부터 그에 상응하는 아이소소바이드-디케톤[2,6-dioxabicyclo (3,3,0)octan-4,8-one]으로의 높은 선택적 전환을 통한 효율적인 루테늄/템포/나이트레이트 촉매 시스템 개발에 대해 보고한다. 미래의 제조 공정에서의 중요한 플랫폼 화합물 중 하나는 아이소소바이드이다. 오랜 시간 동안, TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl)는 알코올을 카보닐 화합물로 변환하는데 사용되어 왔다. 본 화학 반응에서는 산소 1atm 압력하에, Ru (10 mol%), TEMPO (5 mol%), 질산나트륨(0.03 mmol) 그리고 아이소소바이드(0.5 mmol)를 용매 아세트산(3 ml)을 사용하여 최적화되었다. 이러한 촉매 시스템은 이중 산화 촉매 반응 메커니즘에 대한 가능성뿐만 아니라, 생성물에 대한 원하는 반응물의 높은 선택성(> 97%)과 수율(87%)을 보여주었다.
This research work reports the development of a Ruthenium/2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/nitrate catalyst system for the highly selective transformation of isosorbide (1,4:3,6-dianhydro-D-glucitol) to isosorbide-diketone (2,6-dioxabicyclo (3,3,0)octan-4,8-one). Isosorbide is a critical platform molecule for future manufacturing processes. TEMPO has been utilized to convert alcohols to carbonyl compounds for a long time. The optimal chemical reaction condition was found to be when using isosorbide (0.5 mmol) with supported Ru (10 mol%), TEMPO (5 mol%), and sodium nitrate (0.03 mmol) in the presence of acetic acid (3 ml) as a solvent at 50 °C and 1 atm oxygen pressure. This catalyst system demonstrated good selectivity (> 97%) and yield (87%) with respect to the desired product, in addition to a putative catalytic double oxidation mechanism.
- Fawzy A, Guesmi NE, Althagafi I, Asghar BH, Transit. Met. Chem., 42, 229 (2017)
- Arico F, Curr. Opin. Green Sustain. Chem., 21, 82 (2020)
- Rose M, Palkovits R, ChemSusChem, 5, 167 (2012)
- Selva M, Perosa A, Padron DR, Luque R, ACS Sustainable Chem. Eng., 7, 6471 (2019)
- Saxon DJ, Luke AM, Sajjad H, Tolman WB, Reineke TM, Prog. Polym. Sci., 101, 101196 (2020)
- Kucherov FA, Romashov LV, Galkin KI, Ananikov VP, ACS Sustainable Chem. Eng., 6, 8064 (2018)
- Zhu Y, Romain C, Williams CK, Nature, 540, 1600 (2016)
- Delidovich I, Hausoul PJC, Deng L, Pfutzenreuter R, Rose M, Palkovits R, Chem. Rev., 116(3), 1540 (2016)
- Gao K, Xin JY, Yan DX, Dong HX, Zhou Q, Lu XM, Zhang SJ, J. Chem. Technol. Biotechnol., 93(9), 2617 (2018)
- Villo P, Matt L, Toom L, Liblikas I, Pehk T, Vares L, J. Org. Chem., 81, 7510 (2016)
- Engel RV, Heterogeneously Catalysed Amination and Isomerisation of Isohexides, Germany (2016).
- Hockett RC, Fletcher HG, Sheffield EL, Goepp RM, J. Am. Chem. Soc., 68, 927 (1946)
- Bell FK, Carr CJ, Krantz JC, J. Phys. Chem., 44, 862 (1940)
- Fleche G, Huchette M, Starch, 338, 26 (1986)
- Dussenne C, Delaunay T, Wiatz V, Wyart H, Suisse I, Sauthier M, Green Chem., 19, 5332 (2017)
- Stoss P, Hemmer R, Adv. Carbohydr. Chem. Biochem., 49, 93 (1991)
- Muri EMF, Abrahim BA, Barros TG, Williamson JS, Antunes OAC, Isomannide and Derivatives. Chemical and Pharmaceutical Applications, United Arab Emirates (2010).
- Buu ONV, Aupoix A, Bo-Thanh G, Tetrahedron, 65, 2260 (2009)
- Gross J, Tauber K, Fuchs M, et al., Green Chem., 16, 2117 (2014)
- Jacquet F, Granado C, Rigal L, Gaset A, Appl. Catal., 18, 157 (1985)
- Jacquet F, Audinos R, Delmas M, Gaset A, Biomass, 6, 193 (1985)
- Dingerdissen U, Pfeffer J, Tacke T, et al., Method for producing 2,6-dioxabicyclo-(3.3.0)-octane-4,8-dione, US Patent 8,378,127B2 (2013).
- Xi JX, Zhang Y, Ding DQ, Xia QN, Wang JJ, Liu XH, Lu GZ, Wang YQ, Appl. Catal. A: Gen., 469, 108 (2014)
- Zia H, Ma JKH, O’Donnell JP, Luzzi LA, Pharm. Res., 8, 502 (1991)
- Dijksman A, Marino-Gonzalez A, Payeras AMI, Arends IWCE, Sheldon RA, J. Am. Chem. Soc., 123(28), 6826 (2001)
- Souza MVND, Mini-Reviews in Org. Chem., 3, 155 (2006)