화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.1, 103-108, February, 2022
아이소소바이드의 효과적 산화반응을 위한 루테늄/템포/나이트레이트 촉매 시스템 개발
Development of Ruthenium/TEMPO/Nitrate Catalyst System for Efficient Oxidation of Isosorbide
E-mail:
초록
본 연구에서는 아이소소바이드(1,4:3,6-dianhydro-D-glucitol)로부터 그에 상응하는 아이소소바이드-디케톤[2,6-dioxabicyclo (3,3,0)octan-4,8-one]으로의 높은 선택적 전환을 통한 효율적인 루테늄/템포/나이트레이트 촉매 시스템 개발에 대해 보고한다. 미래의 제조 공정에서의 중요한 플랫폼 화합물 중 하나는 아이소소바이드이다. 오랜 시간 동안, TEMPO (2,2,6,6-tetramethylpiperidine-N-oxyl)는 알코올을 카보닐 화합물로 변환하는데 사용되어 왔다. 본 화학 반응에서는 산소 1atm 압력하에, Ru (10 mol%), TEMPO (5 mol%), 질산나트륨(0.03 mmol) 그리고 아이소소바이드(0.5 mmol)를 용매 아세트산(3 ml)을 사용하여 최적화되었다. 이러한 촉매 시스템은 이중 산화 촉매 반응 메커니즘에 대한 가능성뿐만 아니라, 생성물에 대한 원하는 반응물의 높은 선택성(> 97%)과 수율(87%)을 보여주었다.
This research work reports the development of a Ruthenium/2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO)/nitrate catalyst system for the highly selective transformation of isosorbide (1,4:3,6-dianhydro-D-glucitol) to isosorbide-diketone (2,6-dioxabicyclo (3,3,0)octan-4,8-one). Isosorbide is a critical platform molecule for future manufacturing processes. TEMPO has been utilized to convert alcohols to carbonyl compounds for a long time. The optimal chemical reaction condition was found to be when using isosorbide (0.5 mmol) with supported Ru (10 mol%), TEMPO (5 mol%), and sodium nitrate (0.03 mmol) in the presence of acetic acid (3 ml) as a solvent at 50 °C and 1 atm oxygen pressure. This catalyst system demonstrated good selectivity (> 97%) and yield (87%) with respect to the desired product, in addition to a putative catalytic double oxidation mechanism.
  1. Fawzy A, Guesmi NE, Althagafi I, Asghar BH, Transit. Met. Chem., 42, 229 (2017)
  2. Arico F, Curr. Opin. Green Sustain. Chem., 21, 82 (2020)
  3. Rose M, Palkovits R, ChemSusChem, 5, 167 (2012)
  4. Selva M, Perosa A, Padron DR, Luque R, ACS Sustainable Chem. Eng., 7, 6471 (2019)
  5. Saxon DJ, Luke AM, Sajjad H, Tolman WB, Reineke TM, Prog. Polym. Sci., 101, 101196 (2020)
  6. Kucherov FA, Romashov LV, Galkin KI, Ananikov VP, ACS Sustainable Chem. Eng., 6, 8064 (2018)
  7. Zhu Y, Romain C, Williams CK, Nature, 540, 1600 (2016)
  8. Delidovich I, Hausoul PJC, Deng L, Pfutzenreuter R, Rose M, Palkovits R, Chem. Rev., 116(3), 1540 (2016)
  9. Gao K, Xin JY, Yan DX, Dong HX, Zhou Q, Lu XM, Zhang SJ, J. Chem. Technol. Biotechnol., 93(9), 2617 (2018)
  10. Villo P, Matt L, Toom L, Liblikas I, Pehk T, Vares L, J. Org. Chem., 81, 7510 (2016)
  11. Engel RV, Heterogeneously Catalysed Amination and Isomerisation of Isohexides, Germany (2016).
  12. Hockett RC, Fletcher HG, Sheffield EL, Goepp RM, J. Am. Chem. Soc., 68, 927 (1946)
  13. Bell FK, Carr CJ, Krantz JC, J. Phys. Chem., 44, 862 (1940)
  14. Fleche G, Huchette M, Starch, 338, 26 (1986)
  15. Dussenne C, Delaunay T, Wiatz V, Wyart H, Suisse I, Sauthier M, Green Chem., 19, 5332 (2017)
  16. Stoss P, Hemmer R, Adv. Carbohydr. Chem. Biochem., 49, 93 (1991)
  17. Muri EMF, Abrahim BA, Barros TG, Williamson JS, Antunes OAC, Isomannide and Derivatives. Chemical and Pharmaceutical Applications, United Arab Emirates (2010).
  18. Buu ONV, Aupoix A, Bo-Thanh G, Tetrahedron, 65, 2260 (2009)
  19. Gross J, Tauber K, Fuchs M, et al., Green Chem., 16, 2117 (2014)
  20. Jacquet F, Granado C, Rigal L, Gaset A, Appl. Catal., 18, 157 (1985)
  21. Jacquet F, Audinos R, Delmas M, Gaset A, Biomass, 6, 193 (1985)
  22. Dingerdissen U, Pfeffer J, Tacke T, et al., Method for producing 2,6-dioxabicyclo-(3.3.0)-octane-4,8-dione, US Patent 8,378,127B2 (2013).
  23. Xi JX, Zhang Y, Ding DQ, Xia QN, Wang JJ, Liu XH, Lu GZ, Wang YQ, Appl. Catal. A: Gen., 469, 108 (2014)
  24. Zia H, Ma JKH, O’Donnell JP, Luzzi LA, Pharm. Res., 8, 502 (1991)
  25. Dijksman A, Marino-Gonzalez A, Payeras AMI, Arends IWCE, Sheldon RA, J. Am. Chem. Soc., 123(28), 6826 (2001)
  26. Souza MVND, Mini-Reviews in Org. Chem., 3, 155 (2006)