화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.33, No.1, 50-57, February, 2022
TIZO/Ag/TIZO 다층막 투명전극을 이용한 폴리에스터 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 연구
A Study of Electro-Optical Properties of Polyester Acrylate-Based Polymer-Dispersed Liquid Crystals Using TIZO/Ag/TIZO Multilayer Transparent Electrodes
E-mail:
초록
본 연구에서는 RF/DC 마그네트론 증착법을 이용하여 유리 기판 상에 실온에서 TIZO/Ag/TIZO 다층막 투명전극 필름을 증착하였다. 전체 박막 두께 60 nm TIZO/Ag/TIZO (10 nm/10 nm/40 nm)로 이루어진 다층막의 경우 650 nm에서 투과도는 86.5%, 면저항 값은 8.1 Ω/□를 나타냈으며, 적외선(열선)을 효과적으로 차단할 수 있는 투과도 특성 때문에 향후 에너지 절약형 스마트 윈도우로서의 적용도 가능할 것으로 판단된다. TIZO/Ag/TIZO 다층막 투명전극을 적용한 폴리에스터 아크릴레이트 기반 고분자분산액정(polymer-dispersed liquid crystal, PDLC) 시스템에 있어서 액정과 prepolymer의 함량비, PDLC 코팅층의 두께 및 자외선 세기 변화에 따른 전기광학 특성 및 표면 형태학에 미치는 영향이 조사되었다. 15 μm의 PDLC 층 두께에 1.5 mW/cm2의 UV 세기로 광경화된 TIZO/Ag/TIZO 다층막 투명전극 적용 PDLC 셀이 전반적으로 양호한 구동 전압과 on-state 투과도 및 뛰어난 off haze를 나타냈으며, PDLC 복합체의 고분자 매트릭스 표면에 형성된 액정 droplet들은 입사광을 효율적으로 산란시킬 수 있는 1~3 μm 크기를 갖고 있었다. 또한, 본 연구에서 제조된 TIZO/Ag/TIZO 다층막 투명전극 적용 PDLC 기반 스마트 윈도우는 연한 갈색의 색조를 띠고 있어서 심미적 측면에서 색다른 장점을 부여할 것으로 기대된다.
Ti-In-Zn-O (TIZO)/Ag/TIZO multilayer transparent electrodes were prepared on glass substrates at room temperature using RF/DC magnetron sputtering. Obtained multilayer structure comprising TIZO/Ag/TIZO (10 nm/10 nm/40 nm) with the total thickness of 60 nm showed a transmittance of 86.5% at 650 nm and a sheet resistance of 8.1 Ω/□. The multilayer films were expected to be applicable for use in energy-saving smart window based on polymer-dispersed liquid crystal (PDLC) because of their transmittance properties to effectively block infrared rays (heat rays). We investigated the effects of the content ratio of prepolymer, the thickness of the PDLC coating layer, and the ultraviolet (UV) light intensity on electro-optical properties, and the surface morphology of polyester acrylate-based PDLC systems using new TIZO/Ag/TIZO transparent conducting electrodes. A PDLC cell with a thickness of 15 μm PDLC layer photocured at an UV intensity of 1.5 mW/cm2 exhibited good driving voltage, favorable on-state transmittance, and excellent off-haze. The LC droplets formed on the surface of the polymer matrix of the PDLC composite had a size range of 1 to 3 μm capable of efficiently scattering incident light. Also, the PDLC-based smart window manufactured using TIZO/Ag/TIZO multi-layered transparent electrodes in this study exhibited a light brown, which will have an advantage in terms of aesthetics.
  1. Doane JW, Liquid Crystals: Applications and Uses, 361, World Scientific, Singapore (1990).
  2. Drzaic PS, Liquid Crystal Dispersions, World Scientific, Singapore (1995).
  3. Whitehead JB, Zumer S, Doane JW, J. Appl. Phys., 73, 1057 (1993)
  4. Km D, J. Ind. Eng. Chem., 2, 73 (1997)
  5. Moller MT, Asaftei S, Corr D, Ryan M, Walder L, Adv. Mater., 16(17), 1558 (2004)
  6. Barrios D, Vergaz R, Sanchez-Pena JM, Garcia-Camara B, Granqvist CG, Niklasson GA, Sol. Energy Mater. Sol. Cells, 143, 613 (2015)
  7. Fujisawa T, Hayasi M, Nakada H, Tani Y, Aizawa M, Mol. Cryst. Liq. Cryst., 366, 107 (2001)
  8. Hoyle CE, Lee TY, Roper T, J. Polym. Sci. A: Polym. Chem., 42(21), 5301 (2004)
  9. Hwang SH, Yang KJ, Woo SH, Choi BD, Mol. Cryst. Liq. Cryst., 470, 163 (2007)
  10. White TJ, Natarajan LV, Bunning TJ, Guymon CA, Liq. Cryst., 34, 1377 (2007)
  11. Duran H, Meng S, Kim N, Hu J, Kyu T, Natarajan LV, Tondiglia VP, Bunning TJ, Polymer, 49(2), 534 (2008)
  12. No YS, Jeon CW, Mol. Cryst. Liq. Cryst., 513, 98 (2009)
  13. Kashima M, Cao H, Meng QY, Liu HJ, Wang D, Li FS, Yang HA, J. Appl. Polym. Sci., 117(6), 3434 (2010)
  14. Yang KJ, Yoon DY, J. Ind. Eng. Chem., 17(3), 543 (2011)
  15. Minami T, Miyata T, Thin Solid Films, 517(4), 1474 (2008)
  16. Liu DS, Sheu CS, Lee CT, Lin CH, Thin Solid Films, 516(10), 3196 (2008)
  17. Park Y, Choong V, Gao Y, Hsieh BR, Tang SW, Appl. Phys. Lett., 68, 2699 (1996)
  18. Cui J, Wang A, Edleman NL, Ni J, Lee P, Armstrong NR, Marks TJ, Adv. Mater., 13(19), 1476 (2001)
  19. Bender M, Seelig W, Daube C, Frankenberger H, Ocker B, Stollenwerk J, Thin Solid Films, 326(1-2), 67 (1998)
  20. Shin YW, Kim KB, Noh SJ, Soh SY, Appl. Chem. Eng., 29(2), 162 (2018)
  21. Lewis J, Grego S, Chalamala B, Vick E, Temple D, Appl. Phys. Lett., 85, 3450 (2004)
  22. Cho SW, Jeong JA, Bae JH, Moon JM, Choi KH, Jeong SW, Park NJ, Kim JJ, Lee SH, Kang JW, Yi MS, Kim HK, Thin Solid Films, 516(21), 7881 (2008)
  23. Choi KH, Nam HJ, Jeong JA, Cho SW, Kim HK, Kang JW, Kim DG, Cho WJ, Appl. Phys. Lett., 92, 223302 (2008)
  24. Kim EM, Choi IS, Oh JP, Kim YB, Lee JH, Choi YS, Cho JD, Kim YB, Heo GS, Jpn. J. Appl. Phys., 53, 095505 (2014)
  25. Cho JD, Lee SS, Park SC, Kim YB, Hong JW, J. Appl. Polym. Sci., 130(5), 3098 (2013)
  26. Cho JD, Kim YB, Heo GS, Kim EM, Hong JW, Appl. Chem. Eng., 31(3), 291 (2020)
  27. Heo GS, Park JC, Oh BY, Kim SK, Lee YR, Shin DC, Thin Solid Films, 520(24), 7083 (2012)
  28. Guillen C, Herrero J, Opt. Commun., 282, 574 (2009)
  29. Ito S, Takeuchi T, Katayama T, Sugiyama M, Matsuda M, Kitamura T, Wada Y, Yanagida S, Chem. Mater., 15, 2824 (2003)
  30. Fahland M, Karlsson P, Charton C, Thin Solid Films, 392(2), 334 (2001)
  31. Liu XJ, Cai X, Qiao JS, Mao HF, Jiang N, Thin Solid Films, 441(1-2), 200 (2003)