Korean Journal of Materials Research, Vol.32, No.1, 14-22, January, 2022
Pd/r-TiO2 나노튜브 이종결합 광촉매의 합성과 특성
Synthesis and Characteristics of Pd/r-TiO2 Nanotube Arrays Hetrojunction Photocatalyst
E-mail:
To improve light absorption ability in the visible light region and the efficiency of the charge transfer reaction, Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst were synthesized. The reduced TiO2 nanotube photocatalyst was fabricated by anodic oxidation of Ti plate, followed by an electrochemical reduction process using applied cathodic potential. For TiO2 photocatalyst electrochemically reduced using an applied voltage of -1.3 V for 10 min, 38% of Ti4+ ions on TiO2 surface were converted to Ti3+ ion. The formation of Ti3+ species leads to the decrease in the band gap energy, resulting in an increase in the light absorption ability in the visible range. To obtain better photocatalytic efficiency, Pd nanoparticles were decorated through photoreduction process on the surface of reduced TiO2 nanotube photocatalyst (r10-TNT). The Pd nanoparticles decorated with reduced TiO2 nanotube photocatalyst exhibited enhanced photocurrent response, and high efficiency and rate constant for aniline blue degradation; these were ascribed to the synergistic effect of the new electronic state of the TiO2 band gap energy induced by formation of Ti3+ species on TiO2, and by improvement of the charge transfer reaction.
- Wang Q, Jin R, Zhang M, Gao S, J. Alloy. Compd., 690, 139 (2017)
- Pan L, Zou JJ, Wang S, Huang ZF, Yu A, Wang L, Zhang X, Chem. Commun., 49, 6593 (2013)
- Pan L, Zou JJ, Zhang XW, Wang L, J. Am. Chem. Soc., 133(26), 10000 (2011)
- Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ, Nature, 453, 638 (2008)
- Lv K, Yu J, Cui L, Chen S, Li M, J. Alloy. Compd., 509, 4557 (2011)
- Zhang Y, Xing Z, Liu X, Li Z, Wu X, Jiang J, Li M, Zhu Q, Zhou W, ACS Appl. Mater. Interfaces, 8, 26851 (2016)
- Chen Y, Li WZ, Wang JY, Gan YL, Liu L, Ju MT, Appl. Catal. B: Environ., 191, 94 (2016)
- Ainouche L, Hamadou L, Kadri A, Benbrahim N, Bradai D, Sol. Energy Mater. Sol. Cells, 151, 179 (2016)
- Li G, Lian Z, Li X, Xu Y, Wang W, Zhang D, Tian F, Li H, J. Mater. Chem. A, 3, 3748 (2015)
- Deng XY, Zhang HX, Guo RN, Ma QL, Cui YQ, Cheng XW, Xie MZ, Cheng QF, Sep. Purif. Technol., 192, 329 (2018)
- Liu M, Qiu X, Miyauchi M, Hashimoto K, Chem. Mater., 23, 5282 (2011)
- Qiu B, Zhou Y, Ma Y, Yang X, Sheng W, Xing M, Zhang J, Sci. Rep., 5, 8591 (2015)
- Lian Z, Wang W, Li F, Tian F, Schanze KS, Li H, ACS Appl. Mater. Interfaces, 9, 16959 (2017)
- Jiang B, Tang Y, Qu Y, Wang jQ, Xie Y, Tian C, Zhou W, Fu H, Nanoscale, 7, 5035 (2015)
- Li Z, Ding YT, Kang WJ, Li C, Lin D, Wang XY, Chen ZW, Wu MH, Pan DY, Electrochim. Acta, 161, 40 (2015)
- Tan B, Wu YY, J. Phys. Chem. B, 110(32), 15932 (2006)
- Xu Y, Wu S, Wan P, Sun J, Hood ZD, RSC Adv., 7, 32461 (2017)
- Xu X, Cai J, Zhou M, Du X, Zhang Y, J. Hazard. Mater., 382, 121096 (2020)
- Chen X, Peng X, Jiang L, Yuan X, Fai J, Zhang W, Chem. Eng. J., 427, 130945 (2022)
- Jedsukontorn T, Ueno T, Saito N, Hunsom M, J. Alloy. Compd., 726, 567 (2017)
- Li K, Huang Z, Zeng X, Huang B, Gao S, Lu J, ACS Appl. Mater. Interfaces, 9, 11577 (2017)
- Wang MG, Cui ZX, Yang M, Lin LJ, Chen XC, Wang M, Han J, J. Colloid Interface Sci., 544, 1 (2019)
- Li SY, Liu ZL, Xiang GX, Ma BH, Meng XD, He YL, Ceram. Int., 45, 767 (2019)
- Monamary A, Vijayalakshmi K, Ceram. Int., 44, 22957 (2018)
- Lee JH, Heo SJ, Youn JI, Kim YJ, Suh SJ, Oh HJ, Korean J. Mater. Res., 29(12), 790 (2019)