화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 469-481, February, 2022
Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices
E-mail:
Monodispersed microbubbles and microdroplets are widely used as reaction carriers in microfluidics. In this study, the generation processes of bubbles and droplets in a step-emulsification microfluidic device are compared to show the similarities and differences in the emulsification process. By changing the placement of the microdevice, the effects of buoyancy and gravity on the generation of bubbles and droplets are introduced, and the feedback mechanism of the bubble layer and the effect of droplet accumulation on the emulsification process are clarified. Finally, based on the analysis of the difference of the pinch-off of the dispersed phase between the bubble and the droplet in this configuration, the Plateau- Rayleigh instability processes for the formation of bubble and droplet are revealed by using a highspeed camera system, and the reasons for the difference of the operating ranges of the gas flow rate and liquid flow rate in the dripping flow regime are explained.
  1. Chung BG, Lee KH, Khademhosseini A, Lee SH, Lab Chip, 12, 45 (2012)
  2. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, et al., Nat. Biotechnol., 33, 1165 (2015)
  3. Ye X, Johnson MD, Diao T, Yates MH, Stahl SS, Green Chem., 12, 1180 (2010)
  4. Chen Z, Liao P, Zhang F, Jiang M, Zhu Y, Huang Y, Lab Chip, 17, 235 (2017)
  5. Wang W, Zhang MJ, Xie R, Ju XJ, Yang C, Mou CL, et al., Angew. Chem. Int. Ed. Engl., 52, 8084 (2013)
  6. Tao S, Yang M, Chen H, Ren M, Chen G, J. Colloid Interface Sci., 486, 16 (2017)
  7. Deng B, de Ruiter J, Schroen K, Foods, 8, 476 (2019)
  8. Maan AA, Nazir A, Khan MKI, Boom R, Schroen K, J. Food Eng., 147, 1 (2015)
  9. Zhu P, Wang L, Lab Chip, 17, 34 (2016)
  10. Fu T, Ma Y, Funfschilling D, Zhu C, Li HZ, Chem. Eng. Sci., 65, 3739 (2010)
  11. Ma R, Fu T, Zhang Q, Zhu C, Ma Y, Li HZ, J. Ind. Eng. Chem., 54, 408 (2017)
  12. Zhang C, Fu T, Zhu C, Jiang S, Ma Y, Li HZ, Chem. Eng. Sci. , 172, 278 (2017)
  13. Du W, Fu T, Zhang Q, Zhu C, Ma Y, Li HZ, AIChE J., 63, 5196 (2017)
  14. Fu T, Ma Y, Li HZ, Chem. Eng. Sci., 144, 75 (2016)
  15. Herranz-Blanco B, Arriaga LR, Makila E, Correia A, Shrestha N, Mirza S, et al., Lab Chip, 14, 1083 (2014)
  16. Sugiura S, Nakajima M, Kumazawa N, Iwamoto S, Seki M, J. Phys. Chem. B, 106, 9405 (2002)
  17. Eggersdorfer ML, Seybold H, Ofner A, Weitz DA, Studart AR, Proc. Natl. Acad. Sci. U.S.A., 115, 9479 (2018)
  18. Shui L, van den Berg A, Eijkel JCT, Microfluid Nanofluid, 11, 87 (2011)
  19. Hati AG, Szymborski TR, Steinacher M, Amstad E, Lab Chip, 18, 648 (2018)
  20. Kobayashi I, Wada Y, Uemura K, Nakajima M, Microfluid Nanofluid, 8, 255 (2009)
  21. Eberhardt A, Boskovic D, Loebbecke S, Panic S, Winter Y, Chem. Eng. Technol, 42, 2195 (2019)
  22. Kawakatsu T, Kikuchi Y, Nakajima M, AOCS, 74, 317 (1997)
  23. Sugiura S, Nakajima M, Seki M, Langmuir, 18, 5708 (2002)
  24. Kobayashi I, Mukataka S, Nakajima M, Ind. Eng. Chem. Res., 44, 5852 (2005)
  25. van Dijke KC, Veldhuis G, Schroen K, Boom RM, AIChE J., 56, 833 (2009)
  26. Kobayashi I, Uemura K, Nakajima M, Langmuir, 22, 10893 (2006)
  27. Amstad E, Chemama M, Eggersdorfer M, Arriaga LR, Brenner MP, Weitz DA, Lab Chip, 16, 4163 (2016)
  28. Liu Z, Duan C, Jiang S, Zhu C, Ma Y, Fu T, J. Ind. Eng. Chem., 92, 18 (2020)
  29. Dangla R, Fradet E, Lopez Y, Baroud CN, J. Phys. D: Appl. Phys., 46 (2013)
  30. Schuler F, Paust N, Zengerle R, von Stetten F, Micromachines, 6, 180 (2015)
  31. Klooster ST, Sahin S, Schroen K, Sci. Rep., 9, 7820 (2019)
  32. Kobayashi I, Mukataka S, Nakajima M, Langmuir, 20, 9868 (2004)
  33. Stolovicki E, Ziblat F, Weitz DA, Lab Chip, 18, 132 (2017)
  34. Dong Z, Wen Z, Zhao F, Kuhn S, Noel T, Chem. Eng. Sci. X, 10 (2021)
  35. M. Schulz, F. von Stetten, R. Zengerle, N. Paust,, Langmuir, 35, 9809 (2019)
  36. Mi S, Fu T, Zhu C, Jiang S, Ma Y, AIChE J., 66 (2019)
  37. Yasuno M, Sugiura S, Iwamoto S, Nakajima M, Shono A, Satoh K, AIChE J., 50, 3227 (2004)
  38. Stoffel M, Wahl S, Lorenceau E, Hohler R, Mercier B, Angelescu DE, Phys. Rev. Lett., 108 (2012)
  39. Sugiura S, Nakajima M, Seki M, Langmuir, 18, 3854 (2002)
  40. Chen GQ, Huang X, Zhang AM, Wang SP, Phys. Fluids, 31 (2019)
  41. Mi S, Jiang S, Zhu C, Ma Y, Fu T, AIChE J., 67 (2020)
  42. Sahin S, Schroen K, Lab Chip, 15, 2486 (2015)
  43. Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M, J. Colloid Interface Sci., 227, 95 (2000)
  44. Kobayashi I, Takano T, Maeda R, Wada Y, Uemura K, Nakajima M, Microfluid Nanofluid, 4, 167 (2007)
  45. Higuera FJ, J. Fluid Mech., 530, 369 (2005)
  46. Zhang L, Shoji M, Chem. Eng. Sci., 56, 5371 (2001)
  47. Cohen I, Nagel SR, Phys. Fluids, 13, 3533 (2001)
  48. Burton JC, Waldrep R, Taborek P, Phys. Rev. Lett., 94 (2005)
  49. van Hoeve W, Dollet B, Versluis M, Lohse D, Phys. Fluids, 23 (2011)
  50. Eggers J, Fontelos MA, Leppinen D, Snoeijer JH, Phys. Rev. Lett., 98 (2007)
  51. Ruth DJ, Mostert W, Perrard S, Deike L, Proc. Natl. Acad. Sci. U. S. A., 116, 25412 (2019)
  52. Lister JR, Stone HA, Phys. Fluids, 10, 2758 (1998)
  53. Vladisavljevic GT, Kobayashi I, Nakajima M, Powder Technol., 183, 37 (2008)
  54. Vladisavljevic GT, Kobayashi I, Nakajima M, Microfluid Nanofluid, 10, 1199 (2010)
  55. Liu Z, Liu X, Jiang S, Zhu C, Ma Y, Fu T, Chem. Eng. Sci., 246 (2021)