화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.106, 198-204, February, 2022
Brightener breakdown at the insoluble anode by active chlorine species during Cu electrodeposition
E-mail:
It is highly important to design and develop appropriate insoluble anodes for industrial Cu electroplating to lower the amount of organic additives that this process consumes. Conventionally, this rapid consumption of additives (e.g., brighteners, suppressors, or levelers) is known to be due to the active radical species (e.g., ·OH) formed during oxygen evolution. In this study, we found that trace amounts of chloride ions present in the electroplating bath are the source of the active chlorine species that accelerate the breakdown at the insoluble anode. A sacrificial, perfluorinated polymer coating effectively decreased the emission of active chlorine species from the electrode, thereby lowering the consumption of the brightener. This study reveals that the suppression of chlorine evolution at the anode can be an effective approach for decreasing brightener consumption during Cu electrodeposition.
  1. Tahir M, Cao Y, Azzouz A, Roy R, Tetrahedron, 85, 132052 (2021)
  2. Moffat TP, Wheeler D, Edelstein MD, Josell D, IBM J. Res. Dev., 49, 19 (2005)
  3. Jin SH, Yoon Y, Jo Y, Lee S, Moon H, Seok S, Kim MJ, Kim JJ, Lee MH, J. Ind. Eng. Chem., 96, 376 (2021)
  4. Kondo K, Akolkar RN, Barkey DP, Yokoi M, Copper electrodeposition for nanofabrication of electronics devices, Springer, (2014).
  5. Braun TM, Josell D, Deshpande S, John J, Moffat TP, J. Electrochem. Soc., 167 (2020)
  6. Kumar KS, Biswas K, Surf. Coat. Technol., 214, 8 (2013)
  7. Marro JB, Okoro CA, Obeng YS, Richardson KC, J. Electrochem. Soc., 164, D543 (2017)
  8. Lin CC, Hu CC, J. Electrochem. Soc., 167 (2020)
  9. Kondo K, Hoang VH, Hirato T, J. Electrochem. Soc., 166, D505 (2019)
  10. Sung M, Yoon Y, Hong J, Kim MJ, Kim JJ, J. Electrochem. Soc., 166, D546 (2019)
  11. Lee MH, Kim MJ, Kim JJ, Electrochim. Acta, 370 (2021)
  12. Lv J, Zhao X, Jie X, Li J, Wei X, Chen B, Hong G, Wu W, Wang L, ChemElectroChem, 6, 3254 (2019)
  13. Xu J, Chen B, Lv J, Chang D, Niu D, Hu S, Zhang X, Xin Z, Wang L, Dyes Pigments, 170 (2019)
  14. Li J, Xu J, Wang X, Wei X, Wang L, Appl. Surf. Sci., 569 (2021)
  15. Kim TY, Sung M, Yoon Y, Lee KH, Choe S, Kim JJ, J. Electrochem. Soc., 166, G61 (2019)
  16. Kim TY, Choe S, Kim JJ, Electrochim. Acta, 357 (2020)
  17. Choe S, Kim MJ, Kim KH, Kim HC, Jeon Y, Kim TY, Kim SK, Kim JJ, J. Electrochem. Soc., 163, D33 (2016)
  18. Wafula F, Yin L, Borgesen P, Andala D, Dimitrov N, J. Electron. Mater., 41, 1898 (2012)
  19. Kimizuka R, Toda H, Eda T, Kishimoto K, Oh R, Honma H, Takai O, J. Electrochem. Soc., 162, D584 (2015)
  20. Wang W, Li YB, Li YL, Appl. Surf. Sci., 255, 4389 (2009)
  21. Moon JH, Shin J, Kim TH, Song D, Cho E, J. Electroanal. Chem., 871 (2020)
  22. Choe S, Kim MJ, Kim HC, Lim T, Park KJ, Kim KH, Ahn SH, Lee A, Kim SK, Kim JJ, J. Electroanal. Chem., 714, 85 (2014)
  23. Lin CC, Yen CH, Hu CC, J. Electrochem. Soc., 166, D626 (2019)
  24. Cobley AJ, Gabe DR, Graves JE, Trans. Inst. Met. Finish., 79, 112 (2001)
  25. Koga T, Nonaka K, Sakata Y, Terasaki N, J. Electrochem. Soc., 165, D467 (2018)
  26. Schmidt R, Gaida J, Chemelectrochem, 5, 2176 (2018)
  27. Schmidt R, Gaida J, Jager C, J. Electrochem. Soc., 166, D350 (2019)
  28. Menard S, Wurm J, Circuit World (2004).
  29. Reid D, Contolini RJ, Dukovic JO, in Electroplating anode including membrane partition system and method of preventing passivation of same, Google Patents, (2000).
  30. Kim JS, Choi JH, Korean J. Chem. Eng., 27, 1213 (2010)
  31. Cobley AJ, Gabe DR, Trans. Inst. Met. Finish., 84, 149 (2006)
  32. Kim TY, Lee MH, Byun J, Jeon H, Choe S, Kim JJ, J. Electrochem. Soc., 168 (2021)
  33. Chen C, Rajeshwar K, J. Electrochem. Soc., 141, 2942 (1994)
  34. Khatua S, Hsieh YL, J. Polym. Sci., Part A: Polym. Chem., 35, 3263 (1997)
  35. Fukatsu K, Kokot S, Polym. Degrad. Stab., 72, 353 (2001)
  36. Kim KW, Lee EH, Kim JS, Shin KH, Jung BI, Electrochim. Acta, 47, 2525 (2002)
  37. Won YS, Cho D, Kim Y, Lee J, Park SS, J. Appl. Polym. Sci., 117, 2083 (2010)
  38. Karimi M, Crossett B, Cordwell SJ, Pattison DI, Davies MJ, Free Radical Biol. Med., 154, 62 (2020)
  39. Choe S, Kim MJ, Kim HC, Cho SK, Ahn SH, Kim SK, Kim JJ, J. Electrochem. Soc., 160, D3179 (2013)
  40. Luna-Trujillo M, Palma-Goyes R, Vazquez-Arenas J, Manzo-Robledo A, J. Electroanal. Chem., 878 (2020)
  41. Murugappan K, Arrigan DWM, Silvester DS, J. Phys. Chem. C, 119, 23572 (2015)
  42. Vos JG, Koper MTM, J. Electroanal. Chem., 819, 260 (2018)
  43. Han M, Yoo BU, Kim M, Lee JY, Lee KH, Park YH, Choe S, J. Electroanal. Chem (2021).
  44. Tang A, Sandall OC, J. Chem. Eng. Data, 30, 189 (1985)
  45. Whitney RP, Vivian J, Ind. Eng. Chem., 33, 741 (1941)
  46. Le Luu T, Kim J, Yoon J, J. Ind. Eng. Chem., 21, 400 (2015)
  47. Kim S, Lee T, Han S, Lee C, Kim C, Yoon J, J. Ind. Eng. Chem., 102, 155 (2021)
  48. Ren Z, Quan S, Gao J, Li W, Zhu Y, Liu Y, Chai B, Wang Y, RSC Adv., 5, 8778 (2015)
  49. Nomura K, Mukohata S, Nukui H, in ELECTROCHEMICAL ELECTRODE, Japan (2013).
  50. Prakash S, Rajesh AM, Shahi VK, Chem. Eng. J., 168, 108 (2011)
  51. Yu TH, Sha Y, Liu WG, Merinov BV, Shirvanian P, Goddard WA, J. Am. Chem. Soc., 133, 19857 (2011)