화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.12, 727-731, December, 2021
UV Laser를 이용한 Borosilicate-Glass (BSG)층의 선택적 에미터 형성
Selective Emitter Formation of Borosilicate-Glass (BSG) Layer using UV Laser
E-mail:
In this study, we have investigated a selective emitter using a UV laser on BBr3 diffusion doping layer. The selective emitter has two regions of high and low doping concentration alternatively and this structure can remove the disadvantages of homogeneous emitter doping. The selective emitters were fabricated by using UV laser of 355 nm on the homogeneous emitters which were formed on n-type Si by BBr3 diffusion in the furnace and the heavy boron doping regions were formed on the laser regions. In the optimized laser doping process, we are able to achieve a highly concentrated emitter with a surface resistance of up to 43 Ω/□ from 105 ± 6 Ω/□ borosilicate glass (BSG) layer on Si. In order to compare the characteristics and confirm the passivation effect, the annealing is performed after Al2O3 deposition using an ALD. After the annealing, the selective emitter shows a better effect than the high concentration doped emitter and a level equivalent to that of the low concentration doped emitter.
  1. Pakr JE, Choi WS, Jang JJ, Bae EJ, Lim DG, Appl. Sci., 10, 4554 (2020)
  2. Lin W, Chen D, Liu C, et al.,, Sol. Energy Mater. Sol. Cells, 210, 110462 (2020)
  3. Ishikawa Y, et al., 2015 IEEE 42nd Photovolt. Spec. Conf. (PVSC), p. 1-3 (2015).
  4. Hilali MM, Rohatgi A, To B, 14Th Work. Cryst. Silicon Sol. Cells Modules, 2004.
  5. Pernau T, Baier T, Laser Tech. J., 9, 29 (2012)
  6. Park SE, Park HM, Nam JG, et al.,, Curr. Photovolt. Res., 4, 54 (2016)
  7. Chen YP, Li CT, Wang L, Int. J. Photoenergy, 2013, 510242 (2013)
  8. Ogane A, Hirata K, Horiuchi K, Nishihara Y, Takahashi Y, Kitiyanan A, Fuyuki T, Jpn. J. Appl. Phys., 48, 071201 (2009)
  9. Song KW, Kim BG, Lee YJ, Park CM, Balaji N, Ju MK, Ju MK, Choi JW, Yi JS, Nanoscale Res. Lett., 7, 1 (2012)
  10. Tao Y, Madani K, Cho E, Rounsaville B, Upadhyaya V, Rohatgi A, Appl. Phys. Lett., 110, 021101 (2017)
  11. Hameiri Z, Mai L, Puzzer T, Wenham SR, Sol. Energy Mater. Sol. Cells, 95(4), 1085 (2011)
  12. Sharan A, Prasad B, Int. J. Renew. Energy Res., 3, 711 (2013)
  13. Hackenberg M, Huet K, Negru R, Venturini J, Fisicaro G, Magna AL, Pichler P, AIP Conf. Proc., 1496, 241 (2012)
  14. Poulain G, Blanc D, Focsa A, et al., Int. J. Photoenergy, 2012, 413863 (2012)
  15. Choi SJ, et al., The Korea Soceity for Energy Engineering, p. 159, 2014.
  16. Kwon SJ, Master's Thesis (in Korean), p. 81, Chonbuk University, Jeonju (2013).
  17. Choi JY, Cho YJ, Chang HS, J. Korean Inst. Electr. Electron. Mater. Eng, 28, 665 (2015)
  18. Packan P, Thompson S, Andideh E, Yu S, Ghani T, Giles M, Sandford J, Bohr M, IEEE, p. 505-508 (1998).
  19. Fernandez-Robledo S, Jager U, Lohmuller E, Nekarda J, Proc. 28th EUPVSEC, p. 1126-1130 (2013).
  20. Jager U, Wolf A, Steinhauser B, Benick J, Nekarda J, Preu R, Int. Soc. Opt. Photonics, 8473, 847309 (2012)