화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.12, 657-664, December, 2021
Ag2Se Modified TiO2 Heterojunction with Enhanced Visible-Light Photocatalytic Performance
E-mail:,
To build a highly active photocatalytic system with high efficiency and low cast of TiO2, we report a facile hydrothermal technique to synthesize Ag2Se-nanoparticle-modified TiO2 composites. The physical characteristics of these samples are analyzed by X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy and BET analysis. The XRD and TEM results show us that TiO2 is coupled with small sized Ag2Se nanoplate, which has an average grain size of about 30 nm in diameter. The agglomeration of Ag2Se nanoparticles is improved by the hydrothermal process, with dispersion improvement of the Ag2Se@TiO2 nanocomposite. Texbrite BA-L is selected as a simulated dye to study the photodegradation behavior of as-prepared samples under visible light radiation. A significant enhancement of about two times the photodegradation rate is observed for the Ag2Se@TiO2 nanocomposite compared with the control sample P25 and as-prepared TiO2. Long-term stability of Ag2Se@TiO2 is observed via ten iterations of recycling experiments under visible light irradiation.
  1. Helmes CT, Sigman CC, Fung VA, et al., J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng., 19, 97 (1984)
  2. Chatterjee D, Dasgupta S, J. Photochem. Photobiol. C, 6, 186 (2005)
  3. Augugliaro V, Litter M, Palmisano L, Soria J, J. Photochem. Photobiol. C, 7, 127 (2006)
  4. Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44, 8269 (2005)
  5. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735 (1995)
  6. Peter LM, Riley DJ, Tull EJ, Wijayantha KGU, Chem. Commun., 10, 1030 (2002)
  7. Shen Q, Arae D, Toyoda T, J. Photochem. Photobiol. A-Chem., 164, 75 (2004)
  8. Ahmad A, Tezcan F, Yerlikaya G, Rehman Z, Paksoy H, Kardas G, J. Alloy. Compd., 868, 159133 (2021)
  9. Yu PR, Zhu K, Norman AG, Ferrere S, Frank AJ, Nozik AJ, J. Phys. Chem. B, 110(50), 25451 (2006)
  10. Sheldrich WS, Wachold M, Angew. Chem.-Int. Edit., 36, 206 (1997)
  11. Zhu L, Ye S, Ali A, Ullah K, Cho KY, Oh WC, Chin. J. Catal., 36, 603 (2015)
  12. Cao HQ, Xiao YJ, Lu YX, Yin JF, Li BJ, Wu SS, Wu XM, Nano Res., 3, 863 (2010)
  13. Meng ZD, Zhu L, Ghosh T, Park CY, Ullah K, Nikam V, Oh WC, Bull. Korean Chem. Soc., 33, 3761 (2012)
  14. Mishra S, Du D, Jeanneau E, Dappozze F, Guillard C, Zhang JL, Daniele S, Chem. Asian J., 11, 1658 (2016)
  15. Zhu L, Trisha G, Park CY, Meng ZD, Oh WC, Chin. J. Catal., 33, 1276 (2012)
  16. Zhang D, Wu R, Cao RM, Xu S, Mater. Lett., 300, 130218 (2021)
  17. Zhang XW, Zhou MH, Lei LC, Carbon, 43, 1700 (2005)
  18. Qourzal S, Barka N, Tamimi M, Assabbane A, Nounah A, Ihlal A, Ait-Ichou Y, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 29, 1616 (2009)
  19. Zhu L, Peng MM, Cho KY, Ye S, Sarkar S, Ulah K, Meng ZD, Oh WC, J. Korean Ceram. Soc., 50, 504 (2013)
  20. Zhu L, Meng ZD, Oh WC, J. Nanomater., 2012, 1 (2012)
  21. Yu XD, Wu QY, Jiang SC, Guo YH, Mater. Charact., 57, 333 (2006)
  22. Zhang FJ, Liu J, Chen ML, Oh WC, J. Korean Ceram. Soc., 46, 263 (2009)
  23. Li H, Zhu B, Feng Y, Wang S, Zhang S, Huang W, J. Solid. State. Chem., 180, 2136 (2007)
  24. Xie Y, Heo SH, Kim YN, Yoo SH, Cho SO, Nanotechnology, 21, 015702 (2010)
  25. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY, Appl. Catal. B: Environ., 98(1-2), 27 (2010)
  26. Kyriakopoulos J, Tzirakis MD, Panagiotou GD, Alberti MN, Triantafyllidis KS, Giannakaki S, Bourikas K, Kordulis C, Orfanopoulos M, Lycourghiotis A, Appl. Catal. B: Environ., 117, 36 (2012)
  27. Meng ZD, Zhu L, Ullah K, Ye S, Oh WC, Mater. Res. Bull., 56, 45 (2014)
  28. Zhang XL, Tang YH, Li Y, Wang Y, Liu XN, Liu CB, Luo SL, Appl. Catal. A: Gen., 457, 78 (2013)