Korean Journal of Materials Research, Vol.31, No.11, 626-634, November, 2021
탄소 단섬유가 첨가된 Cu기지 복합재료의 섬유 분율 및 배열에 따른 열적 특성
Thermal Properties according to Content and Alignment of Carbon Fiber in Cu Matrix Composite Reinforced with Chopped Carbon Fiber
E-mail:
Cu matrix composites reinforced with chopped carbon fiber (CF), which is cost effective and can be well dispersed, are fabricated using electroless plating and hot pressing, and the effects of content and alignment of CF on the thermal properties of CF/Cu composites are studied. Thermal conductivity of CF/Cu composite increases with CF content in the in-plane direction, but it decreases above 10% CF; this is due to reduction of thermal diffusivity related with phonon scattering by agglomeration of CF. The coefficient of thermal expansion decreases in the in-plane direction and increases in the through-plane direction as the CF content increases. This is because the coefficient of thermal expansion of the long axis of CF is smaller than that of the Cu matrix, and the coefficient of thermal expansion of its short axis is larger than that of the Cu matrix. The thermal conductivity is greatly influenced by the agglomeration of CF in the CF/Cu composite, whereas the coefficient of thermal expansion is more influenced by the alignment of CF than the aggregation of CF.
Keywords:carbon fiber/copper composite;chopped carbon fiber;thermal conductivity;coefficient of thermal expansion;electroless plating
- Schelling PK, Goodson KE, Mater. Today, 8, 30 (2005)
- Wissler M, J. Power Sources, 156(2), 142 (2006)
- Zweben C, J. Miner. Met. Mater. Soc., 50, 47 (1998)
- Han X, Huang Y, Compos. Commun., 24, 100665 (2021)
- Fan R, Huang Y, J. Alloy. Compd., 858, 157630 (2021)
- Kim D, Kwon H, Materials, 14, 266 (2021)
- Wei C, Tang J, ACS Appl. Mater. Interfaces, 13, 21714 (2021)
- Liu Q, Qu XH, J. Alloy. Compd., 587, 255 (2014)
- Si X, Huang Q, Mater. Sci. Eng., 708, 311 (2017)
- Xu LN, Liao JH, Huang L, Ou DL, Guo ZR, Zhang HQ, Ge CW, Gu N, Liu JZ, Thin Solid Films, 434(1-2), 121 (2003)
- Shuai J, Xiong L, Zhu L, Li W, Compos. Appl. Sci. Manuf., 88, 148 (2016)
- Xiong DB, Cao M, Li Z, Zhang D, Sci. Rep., 6, 33801 (2016)
- Subramaniam C, Hata K, Nanoscale, 11, 2089 (2019)
- Samal CP, Parihar JS, Chaira D, J. Alloy. Compd., 569, 95 (2013)
- Silvain JF, Vincent C, Compos. Sci. Technol., 69, 2474 (2009)
- Zhou S, Kang F, Carbon, 50, 5052 (2012)
- Pietrzak K, Strojny-Nedza A, J. Mater. Eng. Perform., 25, 3077 (2016)
- Wang HB, Tao ZC, Li XF, Yan X, Liu ZJ, Guo QG, Appl. Surf. Sci., 439, 488 (2018)
- Lee M, Choi Y, Compos. Sci. Technol., 97, 1 (2014)
- Bakshi SR, Lahiri D, Agarwal A, Int. Mater. Rev., 55, 41 (2010)
- Tjong SC, Mater. Sci. Eng. R Rep., 74, 281 (2013)
- Lee JY, Han JH, Mater. Today Commun., 25, 101450 (2020)
- Shin A, Han JH, J. Alloy. Compd., 737, 15 (2018)
- Cleland DJ, Wang JF, Int. J. Heat Transfer., 49, 3 (2006)
- Lovatt SJ, Carson JK, Int. J. Heat Transfer., 48, 2150 (2005)
- Nan CW, Birringer R, J. Appl. Phys., 81, 6692 (1997)
- Nan CW, Shi Z, Lin Y, Chem. Phys. Lett., 975, 666 (2003)
- Nan CW, Liu G, Shin Y, Li M, Appl. Phys. Lett., 85, 3549 (2004)
- McCullough RL, Compos. Sci. Technol., 22, 3 (1985)
- Kerner EH, Proc. Phys. Soc. B, 69, 808 (1956)
- Turner PS, J. Res. Nat. Bur. Stand., 37, 239 (1946)