화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.6, 890-896, November, 2021
더블 네트워크 컨셉을 이용한 Alginte/Poly(acrylic acid)의 생체 적합 조직 점착 소재의 개발
Development of Biocompatible Tissue-Adhesive Materials of Alginte/Poly(acrylic acid) Using Double-Network Concept
E-mail:
초록
Alginate와 poly(acrylic acid)를 사용하여 생체 적합 조직 점착 소재를 제조하였다. 하이드로겔의 기계적 물성을 개선하기 위해 고안된 더블 네트워크 컨셉에 기반하여 solution casting을 통해 필름 형태로 제작하였다. 1차 네트워크(alginate)의 가교 밀도와 2차 네트워크(poly(acrylic acid)) 물질의 농도 변화에 따라서 기계적 물성은 약 1.5배 및 점착력 변화는 약 2.4배 증가하였다. 또한 생체 조직에서의 점착 거동을 돼지의 허파 조직을 사용하여 고찰하였고 세포독성 평가를 통해 독성이 없음을 확인하였다. 이를 통해 의료용 점착 소재로써 충분한 점착 성능을 가지는 것을 알 수 있었다.
A biocompatible tissue adhesive material was prepared from alginate and poly (acrylic acid). Based on double network concept designed to improve the mechanical properties of the hydrogel, it was made in the form of a film through solution casting. The mechanical properties increased by about 1.5 times and adhesion force by about 2.4 times, depending on the crosslinking density of the primary network (alginate) and the concentration of the secondary network (poly(acrylic acid)) material. In addition, the adhesion behavior in living tissue was studied using pig lung tissue. It was shown that there was no toxicity through cytotoxicity evaluation. Through the above results, it was found that the sample had sufficient adhesive performance as a medical adhesive material.
  1. Lee YH, Int. Polym. Sci. Technol., 25, 402 (2014)
  2. Assmann A, Vegh A, Ghasemi-Rad M, et al., Biomaterials, 140, 115 (2017)
  3. Mehdizadeh M, Yang J, Macromol Biosci., 13, 271 (2013)
  4. Bouten PJ, Zonjee M, Bender J, Yauw ST, van Goor H, van Hest JC, Hoogenboom R, Prog. Polym. Sci, 39, 1375 (2014)
  5. Siepmann J, et al., Fundamentals and applications of controlled release drug delivery; CRS, Springer: New York, 2012.
  6. Lee MS, Hong SK, Kim JC, Polym. Sci. Technol., 23(1), 13 (2012)
  7. Chen Q, Chen H, Zhu L, Zheng J, J. Mater. Chem. B, 3, 3654 (2015)
  8. Na YH, Korea Aust. Rheol. J., 25, 185 (2013)
  9. Lee KY, Mooney DJ, Prog. Polym. Sci., 37, 106 (2012)
  10. George M, Abraham TE, J. Control. Release, 114, 1 (2006)
  11. Queen D, Orsted H, Sanada H, Sussman GA, Int. Wound J., 1, 59 (2004)
  12. Chan LW, Jin YM, Heng PWS, Int. J. Pharm., 242, 255 (2002)
  13. Caliari SR, Burdick JAA, Nat. Methods, 13, 405 (2016)
  14. Andersen T, Auk-Emblem P, Dornish M, Microarrays, 4, 133 (2015)
  15. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, Kim SK, Int. J. Biol. Macromol., 72, 269 (2015)
  16. Hernandez-Gonzalez AC, Tellez-Jurado L, Rodriguez-Lorenzo LM, Carbohydr. Polym., 229, 115514 (2020)
  17. Park H, Robinson JR, Pharm. Res., 4, 457 (1987)
  18. Netsomboon K, Bernkop-Schnurch A, Eur. J. Pharm. Biopharm., 98, 76 (2016)
  19. Russo E, Selmin F, Baldassari S, Gennari CGM, Caviglioli G, Cilurzo F, Parodi BA, J. Drug. Deliv. Sci. Technol., 32, 113 (2016)
  20. Gong JP, Soft Matter, 6, 2583 (2010)
  21. Gong JP, Katsuyama Y, Kurokawa T, Osada Y, Adv. Mater., 15(14), 1155 (2003)
  22. Kull S, Martinelli I, Briganti E, Losi P, Spiller D, Tonlorenzi S, Soldani G, J. Surg. Res., 157, e15 (2009)
  23. Lee SA, Kim JS, Kim JS, Hwang JJ, Lee WS, Kim YH, Chee HK, Korean J. Thorac. Cardiovasc. Surg., 43, 596 (2010)