Journal of Industrial and Engineering Chemistry, Vol.105, 158-170, January, 2022
Polydopamine-modified halloysite nanotube-incorporated polyvinyl alcohol membrane for pervaporation of water-isopropanol mixture
E-mail:
In reference, the mussel-encouraged surface adhesion chemistry, dopamine oxidative autopolymerization on the surface of halloysite nanotubes (HNTs) was performed to confer hydrophilicity to the HNTs. The additional hydrophilic moieties with surface coating by polydopamine (PDA) was assured with transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray photoelectron spectroscopy (XPS) techniques. A PDA/HNT-incorporated polyvinyl alcohol/polyvinyl amine (PVA-PVAm) membrane was fabricated for the pervaporation-dehydration of isopropanol/water (IPA/water), and the filler dispersion, crystallinity, and hydrophilicity of the membrane were confirmed by fieldemission
scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and contact angle measurements, respectively. The pervaporation test was performed with membranes having different PDA/HNT contents, where the flux increased from 0.19 to 0.39 kg/m2h, and the separation factor decreased from 479 to 63 with the 80/20 (w/w, IPA/water) feed mixture at 40 °C. Compared to the unmodified HNTincorporated membrane, the membrane with 5 wt.% PDA/HNT exhibited superior performance. Upon increasing the feed (85/15 IPA/water w/w) temperature from 40 to 70 °C, the flux of water and IPA increased from 0.062 to 0.13 kg/m2h and 0.000063 to 0.00144 kg/m2h, respectively. The apparent energy of activation calculated using the Arrhenius equation was positive for both IPA and water. The higher energy required for permeation of IPA (99.65 kJ/mol) compared to water (22.69 kJ/mol) is attributed to facile permeation of water compared to IPA through the hydrophilic channel created by PDA-HNT. In long-term operation (120 h), the IPA and water flux of the 5 wt.% PDA/HNT-incorporated PVA-PVAm membrane was maintained using a feed composition of 80/20 (w/w %) IPA/water at 40 °C, indicating remarkable reusability of the membrane.
- Ragauskas A, Williams C, Davison B, et al., Science, 311, 484 (2006)
- Vane L, Biofuels Bioprod. Bioref., 2, 553 (2008)
- Chapman PD, Oliveira T, Livingston AG, Li K, J. Membr. Sci., 318(1-2), 5 (2008)
- Sawamura K, Furuhata T, Sekine Y, Kikuchi E, Subramanian B, Matsukata M, Appl. Mater. Interfaces, 7, 13728 (2015)
- Bakhtiari O, Mosleh S, Khosravi T, Mohammadi T, Desalin. Water Treat., 41, 45 (2012)
- Nigiz F, 485, 114465 (2020), https://doi.org/10.1016/j.desal.2020.114465.
- Wu JK, Ye CC, Zhang WH, Wang NX, Lee KR, An QF, J. Membr. Sci., 577, 104 (2019)
- Doguparthy SP, J. Membr. Sci., 185(2), 201 (2001)
- Cai W, Cheng X, Chen X, Li J, Pei J, ACS Omega, 5(12), 6277 (2020)
- Chaudhari S, Cho KY, Joo SH, An BY, Lee SE, Yun SY, Lee GJ, Park JH, Shon MY, Park YI, Korean J. Chem. Eng., 38(2), 411 (2021)
- Huang Z, Ru XF, Zhu YT, Guo YH, Teng LJ, Chem. Eng. Res. Des., 144, 19 (2019)
- Cheng XX, Jiang ZY, Cheng XP, Guo S, Tang L, Yang H, Wu H, Pan FS, Zhang P, Cao XZ, Wang BY, J. Membr. Sci., 545, 19 (2018)
- Xu Z, Liu GZ, Ye H, Jin WQ, Cui ZF, J. Membr. Sci., 563, 625 (2018)
- Philip A, Lihavainen J, Keinanen M, Pakkanen T, Appl. Clay Sci., 143, 80 (2017)
- Abdullayev E, Lvov Y, J. Mater. Chem., 20, 6681 (2010)
- Massaro M, Noto R, Riela S, Molecules, 25, 4863 (2020)
- Ge L, Lin RJ, Wang L, Rufford TE, Villacorta B, Liu SM, Liu LX, Zhu ZH, Sep. Purif. Technol., 173, 63 (2017)
- Wang Z, Yan F, Pei H, Yan K, Cui Z, He B, Fang K, Li J, J. Membr. Sci., 594, 117445 (2020)
- Zeng G, Ye Z, He Y, YAng X, Ma J, Shi H, Feng Z, Chem. Engi. J, 323, 572 (2017)
- Wu W, Cao X, Luo J, He G, Zhang Y, Polym. Compos., 35, 847 (2014)
- Prashanta K, Schmitt H, Lacrampe MF, Krawczak P, Compos. Sci. Technol., 71, 1859 (2011)
- Shao P, Huang RYM, J. Membr. Sci., 287(2), 162 (2007)
- Xie XL, Mai YW, Zhou XP, Mater. Sci. Eng. R, 49, 89 (2005)
- Chaudhari S, Baek M, Kwon Y, Shon M, Nam S, Park Y, Appl. Surf. Sci., 493, 193 (2019)
- Cleaves HJ, Scott AM, Hill FC, Leszczynski J, Sahai N, Hazen R, Chem. Soc. Rev., 41, 5502 (2012)
- Rapp MV, Maier GP, Dobbs HA, Higdon NJ, Waite JH, Butler A, Israelachvili JN, J. Am. Chem. Soc., 138(29), 9013 (2016)
- Kang SM, Hwang NS, Yeom J, Park SY, Messersmith PB, Choi IS, Langer R, Anderson DG, Lee H, Adv. Funct. Mater., 22(14), 2949 (2012)
- Chao C, Liu J, Wang J, Zhang Y, Zhang B, Zhang Y, Xiang X, Chen R, Appl. Mater. Interfaces, 5, 10559 (2013)
- Feng JR, Fan HL, Zha DA, Wang L, Jin ZX, Langmuir, 32(40), 10377 (2016)
- Liu Y, Guan HJ, Zhang J, Zhao YF, Yang JH, Zhang B, Int. J. Hydrog. Energy, 43(5), 2754 (2018)
- Massaro M, Armetta F, Cavallaro G, Martino DFC, Gruttadauria M, Lazzara G, Riela S, d'Ischia M, J. Colloid Interface Sci., 555, 394 (2019)
- Ganguly S, Das N, Macromol. Symp., 382, 180007 (2018)
- Sadjadi S, Lazzara G, Malmir M, Heravi M, J. Catalysis, 366, 245 (2018)
- Liu YC, Tu WW, Chen MY, Ma LL, Yang B, Liang QL, Chen YY, Chem. Eng. J., 336, 263 (2018)
- Chaudhari S, Kwon Y, Moon M, Shon M, Nam S, Park Y, J. Appl. Polym. Sci., 134, 45572 (2017)
- Garcia F, Rodriguez SG, Kalytta A, Reller A, Utah (USA) Z. Anorg. Allg. Chem., 635, 790 (2009)
- Feng K, Hou L, Tang BB, Wu PY, J. Membr. Sci., 490, 120 (2015)
- Zangmeister RA, Morris TA, Tarlov MJ, Langmuir, 29(27), 8619 (2013)
- Yah WO, Xu H, Soejima H, Ma W, Lvov Y, Takahara A, J. Am. Chem. Soc., 134(29), 12134 (2012)
- Zangmeister RA, Morris TA, Tarlov MJ, Langmuir, 29(27), 8619 (2013)
- Raeisi Z, Moheb A, Sadeghi M, Abdolmaleki A, Alibouri M, Chem. Eng. Res. Des., 145, 99 (2019)
- Magalad VT, Gokavi GS, Nadagouda MN, Aminabhavi TM, J. Phys. Chem. C, 115, 14731 (2011)
- Feng XS, Huang RY, Ind. Eng. Chem. Res., 36(4), 1048 (1997)
- Hu S, Zhang Y, Lawless D, Feng X, J. Membr. Sci., 417-418, 34 (2012)
- Zhang R, Xu X, Cao B, Li P, Petroleum Sci., 15, 146 (2018)
- Kittur AA, Kariduraganavar MY, Toti US, Ramesh K, Aminabhavi TM, J. Appl. Polym. Sci., 90(9), 2441 (2003)
- Chen X, Cai W, Chen X, Shi Z, Li J, RSC Adv., 9, 15457 (2019)
- Shirazi Y, Tofighy M, Mohammadi T, J. Membr. Sci., 378, 554 (2011)
- Joo Y, Jeon Y, Lee SU, Sim JH, Ryu J, Lee S, Lee H, Sohn D, J. Phys. Chem., 116, 18230 (2012)
- Amirilargani M, Tofighy MA, Mohammadi T, Sadatnia B, Ind. Eng. Chem. Res., 53(32), 12819 (2014)
- Smitha B, Suhanya D, Sridhar S, Ramakrishna M, J. Membr. Sci., 241(1), 1 (2004)
- Lee J, Zhan J, Ang M, Yeh S, Tsai H, Jeng R, Sep. Purif. Technol., 265 (2021)
- Liu L, Kentish SE, J. Membr. Sci., 553, 63 (2018)
- Hua D, Ong YK, Wang Y, Yang TX, Chung TS, J. Membr. Sci., 453, 155 (2014)
- Kursun F, J. Mol. Struct., 1201 (2020)
- Kursun F, Isıklan N, J. Ind. Eng. Chem., 41, 91 (2016)
- Sajjan AM, Premakshi HG, Kariduraganavar MY, J. Ind. Eng. Chem., 25, 151 (2015)
- Wang J, Zhang W, Li W, Xing W, Korean J. Chem. Eng., 32(7), 1369 (2015)
- Han YJ, Wang KH, Lai JY, Liu YL, J. Membr. Sci., 463, 17 (2014)
- Thorat GB, Gupta S, Murthy ZVP, Chin. J. Chem. Eng., 25(10), 1402 (2017)