화학공학소재연구정보센터
Macromolecular Research, Vol.29, No.10, 681-693, October, 2021
Classical Critical Behaviors and Ginzburg Criteria for Polymer Mixtures
E-mail:
We provide a pedagogical argument on classical critical behaviors of polymer mixtures, which include an ordinary critical point and several multicritical points such as tricritical, isotropic Lifshitz, and isotropic Lifshitz tricritical points. Various scaling exponents and singularities near those critical points are first derived through analyzing Landau free energies in general but suitable forms. A simple binary blend of A and B homopolymers in the mean-field picture is taken as an example of the ordinary critical point to verify its critical exponents and scaling laws by formulating its Landau free energy with the explicit vertex coefficients. A ternary blend consisting of A and B homopolymers of the same sizes and also symmetric A-B diblock copolymer is then employed to get the classical critical exponents and scaling laws for the multicritical points through directly evaluating phase equilibria and scattering functions with varying chain length ratios. In addition, the validity of the mean-field description in the vicinity of those critical points is discussed based on Ginzburg criteria and upper critical dimensions.
  1. Flory PJ, Principles of Polymer Chemistry, Cornell University Press, Ithaca, N. Y., 1953.
  2. de Gennes PG, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, N. Y., 1979.
  3. Kurata M, Thermodynamics of Polymer Solutions, Harwood Academic Publishers, New York, 1982.
  4. Rubinstein M, Colby RH, Polymer Physics, Oxford University Press, New York, 2003.
  5. Huang K, Statistical Mechanics, Wiley, New York, 1987.
  6. Ma SK, Modern Theory of Critical Phenomena, Taylor and Francis, New York, 2018.
  7. Goldenfeld N, Lectures on Phase Transitions and the Renormalization Group, Addison-Wesley Publishing Company, Reading, 1992.
  8. Kumar A, Krishnamoorti HR, Gopal ESR, Phys. Rep., 98, 57 (1983)
  9. Kaul SN, Phys. Rev. B, 23, 1205 (1981)
  10. Yeshurun Y, Salamon MB, Rao KV, Chen HS, Phys. Rev. B, 24, 1536 (1981)
  11. Lee KM, O'Shea MJ, Phys. Rev. B, 48, 13614 (1993)
  12. Molnar AA, Vysochanskii YM, Horvat AA, Nakonechnii YS, Ferroelectrics, 192, 137 (1995)
  13. Sirenko VA, Low Temp. Phys., 38, 799 (2012)
  14. Schwahn D, Mortensen K, Yee-Madeira H, Phys. Rev. Lett., 58, 1544 (1987)
  15. Bates FS, Rosedale JH, Stepanek P, Lodge TP, Wiltzius P, Fredrickson GH, Hjelm RP, Phys. Rev. Lett., 65, 1893 (1990)
  16. Stepanek P, Morkved TL, Krishnan K, Lodge TP, Bates FS, Physica A, 314, 411 (2002)
  17. Levanyuk PN, Soviet Physics JETP, 36, 571 (1959)
  18. Kim D, Revaz B, Zink BL, Hellman F, Rhyne JJ, Mitchell JF, Phys. Rev. Lett., 89, 227202 (2002)
  19. Griffiths RB, J. Chem. Phys., 60, 195 (1974)
  20. Griffiths RB, Widom B, Phys. Rev. A, 8, 2173 (1973)
  21. Hornreich RM, Luban M, Shtrikman S, Phys. Rev. Lett., 35, 1678 (1975)
  22. Hornreich RM, Liebmann R, Schuster HG, Selke W, Z. Physik B, 35, 91 (1979)
  23. Bates FS, Maurer W, Lodge TP, Schulz MF, Matsen MW, Almdal K, Mortensen K, Phys. Rev. Lett., 75, 4429 (1995)
  24. Schwahn D, Mortensen K, Frielinghaus H, Almdal K, Phys. Rev. Lett., 82, 5056 (1999)
  25. Pipich V, Schwahn D, Wilner L, Phys. Rev. Lett., 94, 117801 (2005)
  26. Pipich V, Schwahn D, Wilner L, J. Chem. Phys., 123, 124904 (2005)
  27. Schwahn D, Mortensen K, Frielinghaus H, Almdal K, Kielhorn L, J. Chem. Phys., 112(12), 5454 (2000)
  28. Mortensen K, Schwahn D, Frielinghaus H, Almdal K, J. Appl. Crystallogr., 33, 686 (2000)
  29. Lee WB, Elliott R, Katsov K, Fredrickson GH, Macromolecules, 40(23), 8445 (2007)
  30. Kudlay A, Stepanow S, Macromol. Theory Simul., 11, 16 (2002)
  31. Pipich V, Willner L, Schwahn D, J. Phys. Chem. B, 112(50), 16170 (2008)
  32. Zhang X, Chen Y, Qu L, Yan D, J. Chem. Phys., 139, 074902 (2013)
  33. Yadav M, Bates FS, Morse DC, Macromolecules, 52(11), 4091 (2019)
  34. Barbosa MC, Phys. Rev. E, 48, 1744 (1993)
  35. Broseta B, Fredrickson GH, J. Chem. Phys., 93, 2927 (1990)
  36. Sanchez IC, J. Phys. Chem., 93, 6983 (1989)
  37. Widom B, J. Phys. Chem., 100(31), 13190 (1996)
  38. Huang K, Introduction to Statistical Physics, Taylor & Francis, London, 2009.
  39. Leibler L, Macromolecules, 13, 1602 (1980)
  40. Holyst R, Vilgis TA, Macromol. Theory Simul., 5, 573 (1996)
  41. McQuarrie DA, Statistical Mechanics, University Science Books, Sausalito, California, 2000.
  42. Hansen JP, McDonald IR, Theory of Simple Liquids with Applications to Soft Matter, Academic Press, Oxford, UK, 2013.
  43. Martynov GA, J. Chem. Phys., 129, 244509 (2008)
  44. Binder K, in Phase transitions in polymer blends and block copolymer melts: Some recent developments, Springer Nature, Vol. 112, pp. 181, 2005.
  45. Gelfand IM, Shilov GE, Generalized Functions, American Mathematical Society, Providence, Rhode Island, 2016.
  46. Brazovskii SA, Sov. Phys.-JETP, 41, 85 (1975)
  47. Bates FS, Maurer WW, Lipic PM, Hillmyer MA, Almdal K, Mortensen K, Fredrickson GH, Lodge TP, Phys. Rev. Lett., 79, 849 (1997)
  48. Hillmyer MA, Maurer WW, Lodge TP, Bates FS, Almdal K, J. Phys. Chem. B, 103(23), 4814 (1999)
  49. Hickey RJ, Gillard TM, Irwin MT, Morse DC, Lodge TP, Bates FS, Macromolecules, 49(20), 7928 (2016)
  50. Zhang B, Xie SY, Lodge TP, Bates FS, Macromolecules, 54(1), 460 (2021)
  51. Vorselaars B, Spencer RKW, Matsen MW, Phys. Rev. Lett., 125, 117801 (2020)
  52. Spencer RKW, Matsen MW, Macromolecules, 54(3), 1329 (2021)
  53. Griffiths RB, Wheeler JC, Phys. Rev. A, 2, 1047 (1970)
  54. Sun DC, Cho JH, Polymer, 66, 192 (2015)
  55. Kielhorn L, Muthukumar M, J. Chem. Phys., 107(14), 5588 (1997)
  56. Widom B, Physica, 73, 107 (1974)
  57. de Gennes PG, Phys. Lett, 38A, 339 (1972)
  58. de Gennes PG, Rivista Del Nuovo Cimento, 7, 363 (1977)
  59. Doi M, Introduction to Polymer Physics, Oxford University Press, Oxford, 1996.
  60. Hu W, Polymer Physics: A Molecular Approach, Springer-Verlag, Wien, 2013.
  61. Kadanoff LP, Physics, 2, 263 (1966)
  62. Wilson KG, Phys. Rev. B, 4, 3174 (1971)
  63. Wilson KG, Phys. Rev. B, 4, 3184 (1971)
  64. Wilson KG, Physica, 73, 119 (1974)
  65. Wilson KG, Kogut J, Phys. Rep. C, 12, 75 (1974)
  66. Wilson KG, Rev. Mod. Phys., 55, 583 (1983)
  67. Grosberg AY, Erukhimovich IY, Khokhlov AR, Phys. Lett., 78A, 163 (1980)
  68. Lipkin M, Oono Y, Freed KF, Macromolecules, 14, 1270 (1981)
  69. Stepanow S, Ann. Phys., 495, 301 (1983)
  70. Douglas JF, Freed KF, Macromolecules, 18, 2445 (1985)
  71. Wang ZG, Nemirovsky AM, Freed KF, J. Chem. Phys., 86, 4266 (1987)
  72. Poland D, Macromolecules, 22, 1798 (1989)
  73. Schafer L, Kappeler CK, J. Chem. Phys., 99, 6135 (1993)
  74. Biswas P, Paramekanti A, Cherayil BJ, J. Chem. Phys., 103(17), 7562 (1995)
  75. Stapper M, Vilgis TA, Europhys. Lett., 42, 7 (1998)
  76. Altenberger AR, Siepmann JI, Dahler JS, Physica, 272, 22 (1999)
  77. Liverpool TB, Stapper M, Eur. Phys. J. E, 5, 359 (2001)
  78. Blavatska V, von Ferber C, Holovatch Y, Cond. Matt. Phys., 14, 33701:1 (2011).
  79. Schafer L, Lehr U, Kappeler C, J. Phys. I, 1, 211 (1991)
  80. Kosmas MK, J. Phys. Lett., 45, 889 (1984)
  81. Joanny JF, Leibler L, Ball R, J. Chem. Phys., 81, 4640 (1984)
  82. Broseta B, Leibler L, Joanny JF, Macromolecules, 20, 1935 (1987)
  83. Schafer L, Kappeler C, J. Phys., 46, 1853 (1985)
  84. Schafer L, Kappeler C, Colloid Polym. Sci., 268, 995 (1990)
  85. Schafer L, Kappeler C, J. Chem. Phys., 99, 6135 (1993)