화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.10, 552-561, October, 2021
Plasma Electrolytic Oxidation 방식으로 제조된 B Doped TiO2의 표면특성과 광촉매 특성
Surface Characteristics and Photocatalytic Propertiy of B Doped TiO2 Layer Synthesized by Plasma Electrolytic Oxidation Process
E-mail:
For the purpose of manufacturing a high efficiency TiO2 photocatalyst, B-doped TiO2 photocatalysts are synthesized using a plasma electrolytic oxidation method in 0.5 M H2SO4 electrolyte with different concentrations of H3BO3 as additive. For the B doped TiO2 layer fabricated from sulfuric electrolyte having a higher concentration of H3BO3 additive, the main XRD peaks of (101) and (200) anatase phase shift gradually toward the lower angle direction, indicating volume expansion of the TiO2 anatase lattice by incorporation of boron, when compared with TiO2 layers formed in sulfuric acid with lower concentration of additive. Moreover, XPS results indicate that the center of the binding energy peak of B1s increases from 191.45 eV to 191.98 eV, which suggests that most of boron atoms are doped interstitially in the TiO2 layer rather than substitutionally. The B doped TiO2 catalyst fabricated in sulfuric electrolyte with 1.0 M H3BO3 exhibits enhanced photocurrent response, and high efficiency and rate constant for dye degradation, which is ascribed to the synergistic effect of the new impurity energy band induced by introducing boron to the interstitial site and the improvement of charge transfer reaction.
  1. Liu W, Liu D, Wang K, Yang X, Hu S, Hu L, Nanoscale Res. Lett., 14, 203 (2019)
  2. Hou J, Zhou J, Liu Y, YangY, Zheng S, Wang Q, J. Alloy. Compd., 849, 156439 (2020)
  3. Wang Y, Zhu C, Zuo G, et al., Appl. Catal. B: Environ., 278, 119298 (2020)
  4. Ganesh I, Mol. Catal., 451, 51 (2018)
  5. Zhang L, Shen Q, Yu L, Huang F, Zhang C, Sheng J, Zhang F, Cheng D, Yang H, CrystEngComm, 22, 5481 (2020)
  6. Quesada-Gonzalez M, Baba K, Sotelo-Vazquez C, Choquet P, Carmalt CJ, Parkin IP, Boscher ND, J. Mater. Chem. A, 5, 10836 (2017)
  7. Lu XN, Tian BZ, Chen F, Zhang JL, Thin Solid Films, 519(1), 111 (2010)
  8. Chen D, Yang D, Wang Q, Jiang ZY, Ind. Eng. Chem. Res., 45(12), 4110 (2006)
  9. Lee JH, Youn JI, Kim YJ, Kim IK, Jang KW, Oh HJ, Ceram. Int., 41, 11899 (2015)
  10. Zhao W, Ma WH, Chen CC, Zhao JC, Shuai ZG, J. Am. Chem. Soc., 126(15), 4782 (2004)
  11. Finazzi E, Valentin CD, Pacchioni G, J. Phys. Chem. C, 113, 220 (2009)
  12. Moon SC, Mametsuka H, Tabata S, Suzuki E, Catal. Today, 58(2-3), 125 (2000)
  13. Zhou X, Peng F, Wang H, Yu H, Yang J, Electrochem. Commun., 13, 121 (2011)
  14. Lan X, Wang LZ, Zhang BY, Tian BZ, Zhang JL, Catal. Today, 224, 163 (2014)
  15. Lee JH, Heo SJ, Youn JI, Kim YJ, Suh SJ, Oh HJ, Korean J. Mater. Res., 29(12), 790 (2019)
  16. Lee JH, Heo SJ, Youn JI, Kim YJ, Kim IK, Jang KW, Oh HJ, Korean J. Mater. Res., 27(10), 569 (2017)
  17. Liu L, Liu Y, Wang X, Hu N, Li Y, Li C, Meng Y, An Y, Appl. Surf. Sci., 561, 149969 (2021)
  18. Liu L, Hu N, An YL, Du XY, Zhang X, Li Y, Zeng Y, Cui Z, Materials, 13, 4760 (2020)
  19. Patel N, Dashora A, Jaiswal R, Fernandes R, Yadav M, Kothari DC, Ahuja BL, Miotello A, J. Phys. Chem. C, 119, 18581 (2015)