Biotechnology and Bioengineering, Vol.118, No.11, 4402-4413, 2021
Leloir glycosyltransferases enabled to flow synthesis: Continuous production of the natural C-glycoside nothofagin
C-glycosyltransferase (CGT) and sucrose synthase (SuSy), each fused to the cationic binding module Z(basic2), were co-immobilized on anionic carrier (ReliSorb SP400) and assessed for continuous production of the natural C-glycoside nothofagin. The overall reaction was 3MODIFIER LETTER PRIME-C-beta-glycosylation of the polyphenol phloretin from uridine 5MODIFIER LETTER PRIME-diphosphate (UDP)-glucose that was released in situ from sucrose and UDP. Using solid catalyst optimized for total (similar to 28 mg/g) as well as relative protein loading (CGT/SuSy = similar to 1) and assembled into a packed bed (1 ml), we demonstrate flow synthesis of nothofagin (up to 52 mg/ml; 120 mM) from phloretin (>= 95% conversion) solubilized by inclusion complexation in hydroxypropyl beta-cyclodextrin. About 1.8 g nothofagin (90 ml; 12-26 mg/ml) were produced continuously over 90 reactor cycles (2.3 h/cycle) with a space-time yield of approximately 11 mg/(ml h) and a total enzyme turnover number of up to 2.9 x 10(3) mg/mg (=3.8 x 10(5) mol/mol). The co-immobilized enzymes exhibited useful effectiveness (similar to 40% of the enzymes in solution), with limitations on the conversion rate arising partly from external liquid-solid mass transfer of UDP under packed-bed flow conditions. The operational half-life of the catalyst (similar to 200 h; 30 degrees C) was governed by the binding stability of the glycosyltransferases (<= 35% loss of activity) on the solid carrier. Collectively, the current study shows integrated process technology for flow synthesis with co-immobilized sugar nucleotide-dependent glycosyltransferases, using efficient glycosylation from sucrose via the internally recycled UDP-glucose. This provides a basis from engineering science to promote glycosyltransferase applications for natural product glycosides and oligosaccharides.
Keywords:continuous production;enzyme co-immobilization;flow bio-catalysis;glycosylation;natural product glycosides;process intensification;sugar nucleotide-dependent glycosyltransferase