화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.105, No.13, 5357-5366, 2021
Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections
The widespread use of antibiotics has resulted in the outbreak and spread of antibiotic-resistant pathogens. Bacterial antibiotic resistance may develop at cellular and community levels. In the latter case, it is based on tolerance which implicates the shift from a free-living form of life (i.e., planktonic) to a sessile multi-stratified community (i.e., biofilm). Metal nanoparticles (MNPs) have been shown to be promising candidates as antimicrobial agents. MNPs are able to interact with and penetrate bacterial biofilms, thus, resulting effective antibiofilm compounds. Another interesting aspect is the possibility of using plants, fungi, yeasts, and bacteria to obtain biogenic MNPs (BMNP). Bacteria are able to grow in presence of many different toxic heavy metal ions thanks to different metal resistance gene clusters that allow a variety of biochemical counters (formation of harmless complexes, efflux, precipitation, reduction, etc.). The formation of BMNPs by bacterial cells could be, in most cases, just a consequence of metal detoxification mechanisms. This review focuses on BMNPs from bacterial origin that may represent a good source of compounds with a broad spectrum of activity against common Gram-positive and Gram-negative pathogens and bacterial biofilms thereof. In particular, the state of art on BMNP synthesis by bacteria is presented and potential applications in the fight against biofilm-associated infections and resistant pathogens are highlighted. In addition, critical aspects on BMNP bacterial synthesis and utilization are commented.