화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.105, No.19, 7123-7139, 2021
Relevance of Candidatus Nitrotoga for nitrite oxidation in technical nitrogen removal systems
Many biotechnological applications deal with nitrification, one of the main steps of the global nitrogen cycle. The biological oxidation of ammonia to nitrite and further to nitrate is critical to avoid environmental damage and its functioning has to be retained even under adverse conditions. Bacteria performing the second reaction, oxidation of nitrite to nitrate, are fastidious microorganisms that are highly sensitive against disturbances. One important finding with relevance for nitrogen removal systems was the discovery of the mainly cold-adapted Cand. Nitrotoga, whose activity seems to be essential for the recovery of nitrite oxidation in wastewater treatment plants at low temperatures, e.g., during cold seasons. Several new strains of this genus have been recently described and ecophysiologically characterized including genome analyses. With increasing diversity, also mesophilic Cand. Nitrotoga representatives have been detected in activated sludge. This review summarizes the natural distribution and driving forces defining niche separation in artificial nitrification systems. Further critical aspects for the competition with Nitrospira and Nitrobacter are discussed. Knowledge about the physiological capacities and limits of Cand. Nitrotoga can help to define physico-chemical parameters for example in reactor systems that need to be run at low temperatures.