Journal of Industrial and Engineering Chemistry, Vol.104, 416-426, December, 2021
Improvement of CuO photostability with the help of a BiVO4 capping layer by preventing self-reduction of CuO to Cu2O
E-mail:
We fabricated BiVO4/CuO heterojunction photoelectrodes by depositing BiVO4 capping layers on CuO photoelectrodes and investigated the photocurrent density and photostability of the photoelectrodes according to the number of BiVO4 depositions using the spin coating method. The morphological, structural, optical, electrical and photoelectrochemical properties of the BiVO4/CuO photoelectrode were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV.visible spectroscopy, electrochemical impedance spectroscopy, and threeelectrode potentiostat/galvanostat equipment. XRD and XPS results showed that the crystallinities and binding energies of BiVO4/CuO photoelectrodes were affected by BiVO4 compared to the CuO photoelectrode. In particular, XPS measurements showed that the Cu 2p3/2 peak binding energies of the CuO photoelectrode and BiVO4/CuO photoelectrodes with poor photostabilities shifted to those of Cu2O, showing self-reduction from CuO to Cu2O, after photostability measurement. In contrast, BiVO4/CuO photoelectrodes with proper BiVO4 deposition cycles showed good photostabilities without self-reduction. The BiVO4/CuO photoelectrode with 4 BiVO4 deposition cycles showed a high photostability of 76.2% via photocorrosion suppression, which is a much improved result compared to the single CuO photoelectrode with a photostability of 13.1%. However, the photocurrent density of -1.77 mA/cm2 (vs. SCE at -0.55 V) is still low, and further study is necessary.
- Regonini D, Chen G, Leach C, Clemens FJ, Electrochim. Acta, 213, 31 (2016)
- Makimizu Y, Yoo J, Poornajar M, Nguyen NT, Ahn HJ, Hwang I, Kment S, Schmuki P, J. Mater. Chem. A, 8, 1315 (2020)
- Chiang CY, Shin Y, Ehrman S, J. Electrochem. Soc., 159, B227 (2011)
- Yin X, Liu Q, Yang YH, Liu Y, Wang KK, Li YM, Li DW, Qiu XQ, Li WZ, Li J, Int. J. Hydrog. Energy, 44(2), 594 (2019)
- Liu CJ, Yang YH, Li J, Chen S, Li WZ, Tang XD, Chem. Eng. J., 326, 603 (2017)
- Zhang Z, Dua R, Zhang L, Zhu H, Zhang H, Wang PJAN, ACS Nano, 7, 1709 (2013)
- Ha JW, Oh JJ, Choi HY, Ryu HH, Lee WJ, Bae JS, J. Ind. Eng. Chem., 58, 38 (2018)
- Babu MH, Podder J, Dev BC, Sharmin M, Surf. Interfaces, 19 (2020)
- Masudy-Panah S, Moakhar RS, Chua CS, Kushwaha A, Wong TI, Dalapati GK, RSC Adv., 6, 29383 (2016)
- Masudy-Panah S, Eugene YJK, Khiavi ND, Katal R, Gong X, J. Mater. Chem. A, 6, 11951 (2018)
- Xing H, Guo LEZ, Zhao D, Liu Z, Chem. Eng. J., 394, 124907 (2020)
- Shaislamov U, Krishnamoorthy K, Kim SJ, Chun W, Lee HJ, RSC Adv., 6, 103049 (2016)
- Yao LZ, Wang WZ, Wang LJ, Liang YJ, Fu JL, Shi HL, Int. J. Hydrog. Energy, 43(33), 15907 (2018)
- Shaislamov U, Krishnamoorthy K, Kim SJ, Chun W, Lee HJ, RSC Adv., 6, 103049 (2016)
- Swain G, Sultana S, Moma J, Parida K, Inorg Chem, 57, 10059 (2018)
- Pilli SK, Deutsch TG, Furtak TE, Brown LD, Turner JA, Herring AM, Phys. Chem. Chem. Phys., 15, 3273 (2013)
- Monfort O, Pop LC, Sfaelou S, Plecenik T, Roch T, Dracopoulos V, Stathatos E, Plesch G, Lianos P, Chem. Eng. J., 286, 91 (2016)
- Meng L, Tian W, Wu F, Cao F, Li L, J. Mater. Sci. Technol., 35, 1740 (2019)
- Septina W, Prabhakar RR, Wick R, Moehl T, Tilley SD, Chem. Mater., 29, 1735 (2017)
- Ran JH, Chen HB, Bai X, Bi SG, Jiang HY, Cai GM, Cheng DS, Wang X, Appl. Surf. Sci., 493, 1167 (2019)
- Zhao WR, Wang Y, Yang Y, Tang J, Yang YA, Appl. Catal. B: Environ., 115, 90 (2012)
- Wang W, Wang J, Wang Z, Wei X, Liu L, Ren Q, Gao W, Liang Y, Shi H, Dalton Trans., 43, 6735 (2014)
- Yang YR, Zhong XH, Liu K, Du JY, Yang Y, He HC, Zhou Y, Dong FQ, Fu C, Wang J, J. Electrochem. Soc., 166(12), H513 (2019)
- Malliga P, Pandiarajan J, Prithivikumaran N, Neyvasagam KJ, J. Appl. Phys., 6, 22 (2014)
- Shelke V, Bhole MP, Patil DS, Mater. Chem. Phys., 141(1), 81 (2013)
- Ha JW, Ryu H, Lee WJ, Bae JS, Physica B, 519, 95 (2017)
- Ilari GM, Fella CM, Ziegler C, Uhl AR, Romanyuk YE, Tiwari AN, Sol. Energy Mater. Sol. Cells, 104, 125 (2012)
- Guerrero-Araque D, Ramirez-Ortega D, Acevedo-Pena P, Tzompantzi F, Calderon HA, Gomez R, J. Photochem. Photobiol. A-Chem., 335, 276 (2017)
- Su L, Zhang Q, Wu T, Chen M, Su Y, Zhu Y, Xiang R, Gui X, Tang Z, Appl. Phys. Lett., 105 (2014)
- Sharma D, et al., international journal of hydrogen energy, 41, 18339 (2016).
- Chiu WH, Lee CH, Cheng HM, Lin HF, Liao SC, Wu JM, Hsieh WF, Energy Environ. Sci., 2, 694 (2009)
- Berger S, Tsuchiya H, Ghicov A, Schmuki P, Appl. Phys. Lett., 88 (2006)
- Shen K, Wu KJ, Wang DL, Mater. Res. Bull., 51, 141 (2014)
- Kozak DS, Sergiienko RA, Shibata E, Iizuka A, Nakamura T, Sci. Rep., 6, 21178 (2016)
- Zhou M, et al., Chemistry-A, European Journal, 24, 18529 (2018).
- Hao XQ, Wang YC, Zhou J, Cui ZW, Wang Y, Zou ZG, Appl. Catal. B: Environ., 221, 302 (2018)
- Kumar S, Ahirwar S, Satpati AK, RSC Adv., 9, 41368 (2019)
- Mahvelati-Shamsabadi T, Goharshadi E, Ultrason. Sonochem., 34, 78 (2017)
- Hirakawa T, Kamat PV, J. Am. Chem. Soc., 127, 392892 (2005)
- Lee SH, Ryu HH, Lee WJ, Bae JS, J. Ind. Eng. Chem., 82, 63 (2020)
- Kang Q, et al., journal of materials chemistry A, 1, 5766 (2013).
- Hong SJ, Lee S, Jang JS, Lee JS, Energy Environ. Sci., 4, 1781 (2011)
- Chen Y, Wen A, Yin X, Shang L, Wang Y, Opt. Fiber Technol., 18, 1 (2012)
- Dubale AA, Pan CJ, Tamirat AG, et al., J. Mater. Chem. A, 3, 12482 (2015)
- Shaislamov U, Krishnamoorthy K, Kim SJ, Choi S, Chun W, Lee HJ, J. Nanosci. Nanotechnol., 16, 10541 (2016)
- Ho-Kimura SS, Moniz SJ, Tang J, Parkin IP, ACS Sustainable Chem. Eng., 3, 710 (2015)
- Du F, Chen QY, Wang YH, J. Phys. Chem. Solids, 104, 139 (2017)
- Duan SF, Zhang ZX, Geng YY, Yao XQ, Kan M, Zhao YX, Pan XB, Kang XW, Tao CL, Qin DD, Dalton Trans., 47, 14566 (2018)
- Pulipaka S, Boni N, Ummethala G, Meduri P, J. Catal., 387, 17 (2020)