Korean Journal of Materials Research, Vol.31, No.9, 502-510, September, 2021
슈퍼커패시터용 폐면 티셔츠로부터 질소 도핑된 다공성 탄소 직물의 제조 및 전기화학 특성 평가
Preparation and Electrochemical Characterization of Nitrogen-Doped Porous Carbon Textile from Waste Cotton T-Shirt for Supercapacitors
E-mail:,
Hierarchically porous carbon materials with high nitrogen functionalities are extensively studied as highperformance supercapacitor electrode materials. In this study, nitrogen-doped porous carbon textile (N-PCT) with hierarchical pore structures is prepared as an electrode material for supercapacitors from a waste cotton T-shirt (WCT). Porous carbon textile (PCT) is first prepared from WCT by two-step heat treatment of stabilization and carbonization. The PCT is then nitrogendoped with urea at various concentrations. The obtained N-PCT is found to have multi-modal pore structures with a high specific surface area of 1,299 m2 g-1 and large total pore volume of 1.01 cm3 g-1. The N-PCT-based electrode shows excellent electrochemical performance in a 3-electrode system, such as a specific capacitance of 235 F g-1 at 1 A g-1, excellent cycling stability of 100 % at 5 A g-1 after 1,000 cycles, and a power density of 2,500 W kg-1 at an energy density of 3.593 Wh kg-1. Thus, the prepared N-PCT can be used as an electrode material for supercapacitors.
- Liu C, Li F, Ma LP, Cheng HM, Adv. Mater., 22(8), E28 (2010)
- Libich J, Maca J, Vondrak J, Cech O, Sedlarikova M, J. Energy Storage, 17, 224 (2018)
- Raza W, Ali F, Raza N, Luo Y, Kim KH, Yang J, Kumar S, Mehmood A, Kwon EE, Nano Energy, 52, 441 (2018)
- Kouchachvili L, Yaici W, Entchev E, J. Power Sources, 374, 237 (2018)
- Poonam, Sharma K, Arora A, Tripathi SK, J. Energy Storage, 21, 801 (2019)
- Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M, J. Power Sources, 101(1), 109 (2001)
- Zhang LL, Gu Y, Zhao XS, J. Mater. Chem. A, 1, 9395 (2013)
- Cross A, Morel A, Cormie A, Hollenkamp T, Donne S, J. Power Sources, 196(18), 7847 (2011)
- Majumdar D, Maiyalagan T, Jiang Z, ChemElectro Chem, 6, 4343 (2019)
- Agobi AU, Louis H, Magu TO, Dass PM, J. Chem. Rev., 1, 19 (2019)
- Meer S, Kausar A, Iqbal T, Polym.-Plast. Technol. Eng., 55, 1416 (2016)
- Zhang LL, Zhao XS, Chem. Soc. Rev., 38, 2520 (2009)
- Borenstein A, Hanna O, Attias R, Luski S, Brousse T, Aurbach D, J. Mater. Chem. A, 5, 12653 (2017)
- Rodrigues AC, Silva ELD, Oliveira APS, et al., Mater. Today Commun., 21, 100553 (2019)
- Farzana R, Rajarao R, Bhat BR, Sahajwalla V, J. Ind. Eng. Chem., 65, 387 (2018)
- Yang Z, Tian J, Yin Z, Cui C, Qian W, Wei F, Carbon, 141, 467 (2019)
- Dai SG, Liu Z, Zhao BT, Zeng JH, Hu H, Zhang QB, Chen DC, Qu C, Dang D, Liu ML, J. Power Sources, 387, 43 (2018)
- Simotwo SK, Delre C, Kalra V, ACS Appl. Mater. Interfaces, 8, 21261 (2016)
- Pandolfo AG, Hollenkamp AF, J. Power Sources, 157(1), 11 (2006)
- Zhou S, Li X, Wang Z, Guo H, Peng W, Trans. Nonferrous Met. Soc. China, 17, 1328 (2007)
- Teo EYL, Muniandy L, Ng EP, Adam F, Mohamed AR, Jose R, Chong KF, Electrochim. Acta, 192, 110 (2016)
- Yang P, Mai W, Nano Energy, 8, 274 (2014)
- Bi Z, Kong Q, Cao Y, Sun G, Su F, Wei X, Li X, Ahmad A, Xie L, Chen CM, J. Mater. Chem. A, 7, 16028 (2019)
- Liu C, Wang H, Zhao X, Liu H, Sun Y, Tao L, Huang M, Shi J, Shi Z, J. Power Sources, 457, 228056 (2020)
- Nor NM, Chung LL, Teong LK, Mohamed AR, J. Environ. Chem. Eng., 1, 658 (2013)
- Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, Sun Y, Besenbacher F, Yu M, Nano Energy, 47, 547 (2018)
- Huo SL, Liu MQ, Wu LL, Liu MJ, Xu M, Ni W, Yan YM, J. Power Sources, 387, 81 (2018)
- Lu Y, Liang J, Deng S, He Q, Deng S, Hu Y, Wang D, Nano Energy, 65, 103993 (2019)
- Xu B, Zheng DF, Jia MQ, Cao GP, Yang YS, Electrochim. Acta, 98, 176 (2013)
- Gao F, Qu JY, Zhao ZB, Wang ZY, Qiu JS, Electrochim. Acta, 190, 1134 (2016)
- Peng H, Ma GF, Sun KJ, Zhang ZG, Yang Q, Lei ZQ, Electrochim. Acta, 190, 862 (2016)
- Dumanli AG, Windle AH, J. Mater. Sci., 47(10), 4236 (2012)
- Saha S, Samanta P, Murmu NC, Kuila T, J. Energy Storage, 17, 181 (2018)
- Abbas Q, Raza R, Shabbir I, Olabi AG, J. Sci., 4, 341 (2019)
- Candelaria SL, Garcia BB, Liu D, Cao G, J. Mater. Chem., 22, 9884 (2012)
- Deng Y, Xie Y, Zou K, Ji X, J. Mater. Chem. A, 4, 1144 (2016)
- Lee BM, Eom JJ, Baek GY, Hong SK, Jeun JP, Choi JH, Yun JM, Cellulose, 26, 4529 (2019)
- Yu Y, Wang J, Wang J, Li J, Zhu Y, Li X, Song X, Ge M, Cellulose, 24, 1669 (2017)
- Lee BM, Umirov N, Lee JY, Lee JY, Choi BS, Hong SK, Kim SS, Choi JH, Int. J. Energy Res., 45, 9530 (2021)
- He Y, Liu H, Ke Q, Wang J, J. Mater. Chem. A, 2, 11753 (2014)
- Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM, ACS Nano, 4, 5337 (2010)
- Fan LZ, Chen TT, Song WL, Li X, Zhang S, Sci. Rep., 5, 15388 (2015)
- Lee BM, Chang HS, Choi JH, Hong SK, Korean J. Mater. Res., 31(5), 264 (2021)
- Xu B, Zheng DF, Jia MQ, Cao GP, Yang YS, Electrochim. Acta, 98, 176 (2013)
- Kim HJ, Lee CM, Dazen K, Delhom CD, Liu Y, Rodgers JE, French AD, Kim SH, Cellulose, 24, 2385 (2017)
- Nindiyasari F, Griesshaber E, Zimmermann T, et al., J. Compos. Mater., 50, 657 (2016)
- Lee BM, Bui VT, Lee HS, Hong SK, Choi HS, Choi JH, Radiat. Phys. Chem., 163, 18 (2019)
- Kaplas T, Kuzhir P, Nanoscale Res. Lett., 12, 121 (2017)
- Zhou X, Wang P, Zhang Y, Zhang X, Jiang Y, ACS Sustain. Chem. Eng., 4, 5585 (2016)
- Kwon DS, Choi HY, Lee BM, Jeong YG, Yang D, Kim ST, Choi JH, Appl. Surf. Sci., 471, 328 (2019)
- Fujishige M, Yoshida I, Toya Y, Banba Y, Oshida K, et al., J. Environ. Chem. Eng., 5, 1801 (2017)
- Yorgun S, Vural N, Demiral H, Microporous Mesoporous Mater., 122, 189 (2009)
- Phan NH, Rio S, Faur C, Coq LL, Cloirec PL, Nguyen TH, Carbon, 44, 2569 (2006)
- Jo HG, Shin DY, Ahn HJ, Korean J. Mater. Res., 29(3), 167 (2019)
- Lee BM, Choi BS, Lee JY, Hong SK, Lee JS, Choi JH, Carbon Lett., 31, 67 (2021)
- Jeong DS, Yun JM, Kim KH, RSC Adv., 7, 44735 (2017)