- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.31, No.9, 481-487, September, 2021
Effect of Additive Ammonium Hydroxide on ZnO Particle Properties Synthesized by Facile Glycol Process
E-mail:
ZnO particles are successfully synthesized at 150 °C for 30 min using zinc acetate as the Zn source and 1,4- butanediol as solvent using a relatively facile and convenient glycol process. The effect of ammonium hydroxide amounts on the growth behavior and the morphological evolution of ZnO particles are investigated. The prepared ZnO nanoparticle with hexagonal structure exhibits a quasi-spherical shape with an average crystallite size of approximately 30 nm. It is also demonstrated that the morphology of ZnO particles can be controlled by 1,4-butanediol with an additive of ammonium hydroxide. The morphologies of ZnO particles are changed sequentially from a quasi-spherical shape to a rod-like shape and a hexagonal rod shape with a truncated pyramidal tip, exhibiting preferential growth along the [001] direction with increasing ammonium hydroxide amounts. It is demonstrated that much higher OH. amounts can produce a nano-tip shape grown along the [001] direction at the corners and center of the (001) top polar plane, and a flat hexagonal symmetry shape of the bottom polar plane on ZnO hexagonal prisms. The results indicate that the presence of NH4+ and OH. ions in the solution greatly affects the growth behaviors of ZnO particles. A sharp near-band-edge (NBE) emission peak centered at 383 nm in the UV region and a weak broad peak in the visible region between 450 nm and 700 nm are shown in the PL spectra of the ZnO synthesized using the glycol process, regardless of adding ammonium hydroxide. Although the broad peak of the deep-level-emission (DLE) increases with the addition of ammonium hydroxide, it is suggested that the prominent NBE emission peaks indicate that ZnO nanoparticles with good crystallization are obtained under these conditions.
- Moezzi A, McDonagh AM, Cortie MB, Chem. Eng. J., 185-186, 1 (2012)
- Wang ZL, J. Phys. Condens. Matter, 16, R829 (2004)
- Agnieszka KR, Jesionowski T, Materials, 7, 2833 (2014)
- Wang J, Lee JS, Kim D, Zhu L, ACS Appl. Mater. Interfaces, 9, 39971 (2017)
- Huang MH, Mao S, Feick H, Yan H, Wu YY, Kind H, Weber E, Russo R, Yang PD, Science, 292, 1897 (2001)
- Fan ZY, Lu JG, Appl. Phys. Lett., 86, 032111 (2005)
- Li XW, Sun P, Yang TL, Zhao J, Wang Z, Wang W, Liu Y, Lu G, Du Y, CrystEngComm, 15, 2949 (2013)
- Napi MLM, Sultan SM, Ismail R, How KW, Ahmad MK, Materials, 12, 2985 (2019)
- Lv YH, Pan CS, Ma XG, Zong RL, Bai XJ, Zhu YF, Appl. Catal. B: Environ., 138-139, 26 (2013)
- Wei L, Zhang XB, Zhu ZY, J. Vac. Sci. Technol. B, 25(2), 608 (2007)
- Kumar V, Singh N, Kumar V, Purohit LP, Kapoor A, Ntwaeaborwa OM, Swart HC, J. Appl. Phys., 114, 134506 (2013)
- Zhou QF, Sharp C, Cannata JM, Shung KK, Feng GH, Kim ES, Appl. Phys. Lett., 90, 113502 (2007)
- Panda D, Tseng TY, J. Mater. Sci., 48(20), 6849 (2013)
- Fan Z, Lu JG, J. Nanosci. Nanotechnol., 5, 1561 (2005)
- Hahn YB, Korean J. Chem. Eng., 28(9), 1797 (2011)
- Theerthagiri J, Salla S, Senthil RA, Nithyadharseni P, et al., Nanotechnology, 30, 392001 (2019)
- Borysiewicz MA, Crystals, 9, 505 (2019)
- Wojnarowicz J, Chudoba T, Lojkowski W, Nanomaterials, 10, 1086 (2020)
- Yao BD, Chan YF, Wang N, Appl. Phys. Lett., 81, 757 (2002)
- Wu JJ, Liu SC, Adv. Mater., 14(3), 215 (2002)
- Lee J, Easteal AJ, Pal U, Bhattacharyya U, Curr. Appl. Phys., 4, 792 (2009)
- Mousa MA, Bayoumy WAA, Khairy M, Mater. Res. Bull., 48(11), 4576 (2013)
- Raoufi D, Renew. Energy, 50, 932 (2013)
- Fang Y, Li Z, Xu S, Han D, Lu D, J. Alloy. Compd., 575, 359 (2013)
- Ipeksac T, Kaya F, Kaya C, Mater. Lett., 100, 11 (2013)
- Ryu JH, Kil HS, Song JH, Lim DY, Cho SB, Powder Technol., 221, 228 (2012)
- Phimmavong K, Song JH, Cho SB, Lim DY, J. Korean Ceram. Soc., 54, 211 (2017)
- Thein MT, Pung SY, Aziz A, Itoh M, J. Exp. Nanosci., 10, 1068 (2015)
- Cullity BD, Stock SR, Elements of X-Ray Diffraction, p.167 New Jersey, USA (2001).
- Nilavazhagan S, Anbuselvan D, Santhanam A, Chidhambaram N, Appl. Phys. A-Mater. Sci. Process., 126, 279 (2020)
- Li WJ, Shi EW, Zhong WZ, Yin ZW, J. Cryst. Growth, 203, 186 (1999)
- Xu CX, Sun XW, Dong ZL, Yu MB, Appl. Phys. Lett., 85, 3878 (2004)
- Tian ZRR, Voigt JA, Liu J, McKenzie B, McDermott MJ, Rodriguez MA, Konishi H, Xu HF, Nat. Mater., 2(12), 821 (2003)
- Vanheusden K, Warren WL, Seager CH, Tallant DK, Voigt JA, Gnade BE, J. Appl. Phys., 79, 7983 (1996)
- Peng Y, Wang Y, Chen QG, Zhu Q, Xu AW, CrystEngComm, 16, 7906 (2014)