Polymer(Korea), Vol.45, No.5, 748-756, September, 2021
지방족 폴리케톤/폴리아마이드 6 블렌드에서 성분 고분자 간 반응과 젤화가 블렌드의 물성에 미치는 영향
Study on the Effect of Chemical Reaction Between Component Polymers and Gelation on the Physical Properties of Aliphatic Polyketone/polyamide 6 Blends
E-mail:
초록
지방족 폴리케톤(aliphatic polyketon, PK)/폴리아마이드 6(polyamide, PA) 블렌드의 상용성 및 물성에 관하여 연구하였다. PK/PA 블렌드는 상 분리된 구조를 보이면서 계면접착력과 충격강도가 높았는데 두 고분자 간에 화학반응으로 형성된 PK-PA 공중합체가 반응상용화제와 같은 역할을 하기 때문인 것으로 밝혀졌다. PK와 PA의 혼련 토크 값이 두 성분 고분자에 비해 매우 높았고 FTIR 분석으로 형성된 공중합체의 존재를 확인할 수 있었다. 또한 PA는 PK의 가교 반응을 촉진시키는 것으로 관찰되었다. 다양한 가공 조건에서 제조된 블렌드를 분석한 결과 가교 고분자의 양이 증가함에 따라 블렌드의 충격강도가 급격히 증가함을 관찰하였다. 이상의 결과로부터 PK/PA 블렌드의 물성이 상용화제 없이도 높은 이유는 PK와 PA 사이에 발생하는 화학반응과 PA가 PK의 가교화를 촉진시키는 두 가지 원인에 의한 것임을 알 수 있었다.
Compatibility and physical properties of aliphatic polyketon (PK)/polyamide 6 (polyamide, PA) blend were studied. The PK/PA blend showed high interfacial adhesion and impact strength despite the phase-separated morphology. It was observed that PK-PA copolymer formed by the chemical reaction between the two polymers acts as a reactive compatibilizer. The mixing torque for the blends was very high, and the presence of the copolymer was confirmed by FTIR analysis. PA accelerated the crosslinking reaction of PK. The PK/PA blends were prepared under various processing conditions and their impact strength and amount of cross-linked polymer were measured. The impact strength of the blend increased with the amount of the cross-linked polymer. From these results, it was concluded that the reason for the high physical properties of the PK/PA blend is due to the chemical reaction between PK and PA, and the cross-linking reaction of PK promoted by the presence of PA.
Keywords:aliphatic polyketone;polyamide 6;chemical reaction;reactive compatibilization;polymer blend
- Markarin J, Compounding World, 2016, March, 15-22. http://www.compoundingworld.com (accessed August 10, 2021).
- Waddon AJ, Karttunen NR, Lesser AJ, Macromolecules, 32(2), 423 (1999)
- Lagaron JM, Vickers ME, Powell AK, Bonner JG, Polymer, 43(6), 1877 (2002)
- Sommazzi A, Garbassi F, Prog. Polym. Sci, 22, 1547 (1997)
- Shkolnik S, Weil ED, J. Appl. Polym. Sci., 69(9), 1691 (1998)
- Chiantore O, Lazzari M, Ciardelli F, Devito S, Macromolecules, 30(9), 2589 (1997)
- Ash CE, Int. J. Polym. Mater., 30, 1 (1995)
- Lommerts BJ, Polymer, 42(14), 6283 (2001)
- Lee HC, Son Y, Lee S, J. Appl. Polym. Sci., 137, 48743 (2019)
- Xu FY, Chien JC, Macromolecules, 27(22), 6589 (1994)
- de Vos SC, Huhn W, Rieger B, Moller M, Polym. Bull., 42(5), 611 (1999)
- Marklund E, Gedde UW, Hedenqvist MS, Wiberg G, Polymer, 42(7), 3153 (2001)
- Kim Y, Lee CS, Kim S, Jung H, Jho JY, Macromol. Res., 23(10), 965 (2015)
- Semeril D, Passaglia E, Bianchini C, Davies M, Miller H, Ciardelli F, Macromol. Mater. Eng., 288, 475 (2003)
- Asano A, Nishioka M, Takahashi Y, Kato A, Hikasa S, Iwabuki H, Nagata K, Sato H, Hasegawa T, Sawabe H, Arao M, Suda T, Isoda A, Mukai M, Ishikawa D, Izumi T, Macromolecules, 42(24), 9506 (2009)
- Kim Y, Bae JW, Lee CS, Kim S, Jung H, Jho JY, Macromol. Res., 23(10), 971 (2015)
- Lim MY, Kim HJ, Baek SJ, Kim KY,, Lee SS, Lee JC, Carbon, 77, 366 (2014)
- Li S, Yang Y, Zha X, Zhou Y, Yang W, Yang M, Nanomaterials, 8, 932 (2018)
- Zhou YC, Li SY, Yang Y, Bao RY, Liu ZY, Yang MB, Polym. Test, 91, 106777 (2020)
- Ma Y, Zhou T, Su G, Li Y, Zhang A, RSC Adv., 6, 87405 (2016)
- Samples EM, Schuck JM, Joshi PB, Willets KA, Dobereiner GE, Macromolecules, 51(22), 9323 (2018)
- Cortes PG, Araya-Hermosilla R, Araya-Hermosilla E, et al., Polym. Test, 89, 106710 (2020)
- Zhou YC, Zhou L, Feng CP, Wu XT, Bao RY, Liu ZY, Yang MB, Yang W, J. Colloid Interface Sci., 556, 420 (2019)