화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.102, 218-225, October, 2021
Efficient catalyst by a sequential melt infiltration method to achieve a high loading of supported nickel nanoparticles for compact reformer
E-mail:
The development of high-performance Ni catalysts including the formation and stabilization of active Ni nanoparticles with high surface areas by increasing their metal dispersion at the high metal loading have been major issues in the design of a compact reformer for hydrogen production. Herein, we first report a facile method based on the sequential melt infiltration process for creating highly dispersed Ni nanoparticles (~7.5 nm) incorporated into alumina support (Ni/Al2O3) with high Ni load (45 wt%). They showed much higher hydrogen productivity and reaction rate than that of the incipient wet-impregnated Ni catalyst and commercial Ni catalyst as well as good thermal stability in steam-methane reforming under harsh conditions.
  1. Dincer I, Int. J. Hydrog. Energy, 37(2), 1954 (2012)
  2. Atilhan S, Park S, El-Halwagi MM, Atilhan M, Moore M, Nielsen RB, Curr. Opin. Chem. Biol., 31 (2021)
  3. Albrecht U, et al., Study on hydrogen from renewable resources in the EU - Final Report. 2015.
  4. Marcoberardino GD, Vitali D, Spinelli F, Binotti M, Manzolini G, Processes, 6, 19 (2018)
  5. Saur G, Milbrandt A, National Renewable Energy Lab.(NREL), Golden, CO (United States).
  6. Braga LB, Silveira JL, Da Silva ME, Tuna CE, Machin EB, Pedroso DT, Renew. Sust. Energ. Rev., 28, 166 (2013)
  7. EBA, EBA Biogas Report 2015 published.a record growth in Europe.
  8. Bakkaloglu S, Lowry D, Fisher RE, France JL, Brunner D, Chen H, Nisbet EG, Waste Manage., 124, 82 (2021)
  9. Krekel C, et al., Quantifying the externalities of renewable energy plants using wellbeing data: The case of biogas.
  10. PetersS, Serfass P, Sievers B, Peot C, Pauley C, Biogas as a waste management solution American Biogas Council 2018.
  11. Schjølberg I, Hulteberg C, Yasuda I, Nelsson C, Energy Procedia, 29, 559 (2012)
  12. Ogden J, Review of small stationary reformers for hydrogen production. Report to the international energy agency 609 (2001).
  13. Kim TW, Park JC, Lim TH, Jung H, Chun DH, Lee HT, Hong S, Yang JI, Int. J. Hydrog. Energy, 40(13), 4512 (2015)
  14. Yang JI, Kim TW, Park JC, Lim TH, Jung H, Chun DH, Int. J. Hydrog. Energy, 41(19), 8176 (2016)
  15. Mohammadnezami H, Irankhah A, Int. J. Energy Res., 1 (2021).
  16. Pashchenko D, Int. J. Hydrog. Energy, 44(14), 7073 (2019)
  17. Pashchenko D, Int. J. Energy Res., 44(1), 438 (2020)
  18. Azancot L, Bobadilla LF, Santos JL, Cordoba JM, Centeno MA, Odriozola JA, Int. J. Hydrog. Energy, 44(36), 19827 (2019)
  19. de Jongh PE, Eggenhuisen TM, Adv. Mater., 25(46), 6672 (2013)
  20. Eggenhuisen TM, den Breejen JP, Verdoes D, de Jongh PE, de Jong KP, J. Am. Chem. Soc., 132(51), 18318 (2010)
  21. Lee HK, Lee JH, Seo JH, Chun DH, Kang SW, Lee DW, Yang JI, Rhim GB, Youn MH, Jeong HD, Jung H, Park JC, J. Catal., 378, 289 (2019)
  22. Lee HK, Kang SW, Yang JI, Chun DH, Lee JH, Oh D, Ban J, Jung T, Jung H, Park JC, React. Chem. Eng., 5, 1218 (2020)
  23. Kamata H, Tian ZQ, Izumi Y, Choong CKS, Chang J, Schreyer M, Chen LW, Borgna A, Catal. Today, 299, 193 (2018)
  24. Lu MH, Sun Y, Zhang P, Zhu J, Li MS, Shan YH, Shen JY, Song CS, Ind. Eng. Chem. Res., 58(4), 1513 (2019)
  25. Gulyaeva YK, Ermakov DY, Bulavchenko OA, Zaikina OO, Yakovlev VA, Catalysts, 10, 1198 (2020)
  26. Ebadi A, Tourani S, Khorasheh F, Ind. Eng. Chem. Res., 57(38), 12700 (2018)
  27. Kim DH, Lee TJ, HWAHAK KONGHAK, 29(4), 396 (1991)
  28. Jia CJ, Schuth F, Phys. Chem. Chem. Phys., 13, 2457 (2011)
  29. Rogatis D, Cargnello M, Gombac V, Lorenzut B, Montini T, Fornasiero P, ChemSusChem, 3, 24 (2010)
  30. Pashchenko D, Makarov I, Energy, 222, 119993 (2021)