화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.8, 439-444, August, 2021
Interdiffusion Studies of βNiAl Bond Coats: Understanding the Zr, Pt, and Al Migration Trends and Their Beneficial Effects
E-mail:
The oxidation resistance of the diffusion aluminide bond coat (BC) is compromised largely by interdiffusion (ID) effects on coated turbine blades of aeroengines. The present study is designed to understand the influence of ID on βNiAl coatings or BC. In this regard, nickel substrate and CMSX-4 superalloy are deposited. In total, four sets of BCs are developed, i.e. pure βNiAl (on Ni substrate), simple βNiAl (on CMSX-4 substrate), Zr-βNiAl (on CMSX-4 substrate) and Pt-βNiAl (on CMSX-4 substrate). The main aim of this study is to understand the interdiffusion of Al, Zr and Pt during preparation and oxidation. In addition, the beneficial effects of both Zr and platinum are assessed. Pure βNiAl and simple βNiAl show Ni-outdiffusion, whereas for platinum inward diffusion to the substrate is noticed under vacuum treatment. Interestingly, Zr-βNiAl shows the least ID in all BCs and exhibit stability under both vacuum and oxidation treatments. However, its spallation resistance is slightly lower than that of Pt-βNiAl BC. All BCs show similar oxide growth trends, except for Zr-βNiAl, which exhibits two-stage oxidations, i.e. transient and steady-state. Moreover, it is suggested that the localized spallation in all BCs is caused by βNiAl - γ’-Ni3Al transformation.
  1. Tolpygo VK, Clarke DR, Acta Mater., 48, 3283 (2000)
  2. Haynes J, Pint BA, Zhang Y, Wright IG, Surf. Coat. Technol., 202, 730 (2007)
  3. Tawancy H, Abbas NM, Rhys-Jones TN, Surf. Coat. Technol., 49, 1 (1991)
  4. Pint BA, Wright IG, Lee WY, Zhang Y, Prubner K, Alexander KB, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 245, 201 (1998)
  5. Das DK, Prog. Mater. Sci., 58(2), 151 (2013)
  6. Angenete J, Stiller K, Surf. Coat. Technol., 150, 107 (2002)
  7. Wang D, Peng H, Gong S, Guo H, Corrosion Sci., 78, 304 (2014)
  8. Bai Z, Dongqing L, Hui P, Juan W, Hongbo G, Shengkai G, Prog. Nat. Sci: Mater. Int., 22, 146 (2012)
  9. Cavaletti E, Naveos S, Mercier S, Josso P, Bacos MP, Monceau D, Surf. Coat. Technol., 204, 761 (2009)
  10. Cavaletti E, et al., 36th International Conference on Metallurgical Coatings and Thin Films, San Diego, USA (2009).
  11. Dai PC, Wu Q, Ma Y, Li SS, Gong SK, Appl. Surf. Sci., 271, 311 (2013)
  12. Brian JRH, Mark G, Brett B, Ram D, The Minerals, Metals, and Materials Society (2008).
  13. Deodeshmukh V, Mu N, Li B, Gleeson B, Surf. Coat. Technol., 201, 3836 (2006)
  14. Du HL, Kipkemoi J, Tsipas DN, Datta PK, Surf. Coat. Technol., 86-87, 1 (1996)
  15. Pint B, Surf. Coat. Technol., 188-189, 71 (2004)
  16. Hamadi S, Bacos MP, Poulain M, Seyeux A, Maurice V, Marcus P, Surf. Coat. Technol., 204, 756 (2009)
  17. Kuenzly JD, Douglass DL, Oxid. Met., 8, 139 (1974)
  18. Smeggil JG, Mater. Sci. Eng., 87, 261 (1987)
  19. Larson DJ, Miller MK, Mater. Charact., 44, 159 (2000)
  20. Pint BA, Oxid. Met, 45, 1 (1996)
  21. Jia CC, Ishida K, Nishizawa T, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 25, 473 (1994)
  22. Grabke HJ, Intermetallics, 7, 1153 (1999)
  23. Lehnert G, Meinhardt HW, Electrodeposition Surf. Treat., 1, 189 (1972)
  24. Jackson MR, Rairden JR, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 8, 1697 (1977)
  25. Streiff R, Cerclier O, Boone DG, Surf. Coat. Technol., 32, 111 (1987)
  26. Goward GW, Bone DH, Oxid. Met., 3, 475 (1971)