화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.9, 1818-1825, September, 2021
Effect of hydroxyapatite-doping in Na-W-Mn/SiO2 catalysts on oxidative coupling of methane
E-mail:,
Sodium-tungsten-manganese supported on silica (Na-W-Mn/SiO2) and hydroxyapatite (HAp) are representative catalysts for oxidative coupling of methane (OCM). In this work, the effect of the HAp doping in a Na-WMn/ SiO2 catalysts on the OCM performance was studied. To enhance the ethylene selectivity of the Na-W-Mn/SiO2 catalyst, silica supports were coated with HAp containing hydroxyl and phosphate groups as oxygen species. A series of Na-W-Mn/xHAp_SiO2 (x=1, 3, 5 and 7) catalysts with the different HAp coating cycles were prepared through the alternative soaking method, and X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the amount of HAp doping was dependent on the HAp coating cycles. In addition, the change of oxygen species upon HAp doping was examined with X-ray photoelectron spectroscopy (XPS) and oxygen temperature-programmed desorption (O2-TPD) techniques. With HAp doping, the increase of oxygen species assigned to metal oxide responsible for selective oxidation of methane to ethylene was observed in O 1s XPS spectra. In addition, weakly bound oxygen species were observed with the introduction of HAp doping in O2-TPD profiles of prepared catalysts. The influence of these oxygen species on OCM catalytic performance was evaluated at an operating temperature of 775 oC and gas hourly space velocity of 18,000ml/gcat.h. The amount of HAp doping provided reactive oxygen species for oxidative dehydrogenation of ethane, which resulted in as much as 120% increase in C2H4/C2H6 ratio over the Na-W-Mn/ 3HAp_SiO2 catalyst compared to the Na-W-Mn/SiO2 catalyst.
  1. Kathiraser Y, Wang Z, Kawi S, Environ. Sci. Technol., 47, 14510 (2013)
  2. Takanabe K, J. Jap. Petrol. Inst., 55, 1 (2012)
  3. Schwach P, Pan XL, Bao XH, Chem. Rev., 117(13), 8497 (2017)
  4. Horn R, Schlogl R, Catal. Lett., 145(1), 23 (2015)
  5. Strong PJ, Xie S, Clarke WP, Environ. Sci. Technol., 49, 4001 (2015)
  6. Shtyka O, Zakrzewski M, Ciesielski R, Kedziora A, Dubkov S, Ryazanov R, Szynkowska M, Maniecki T, Korean J. Chem. Eng., 37(2), 209 (2020)
  7. Lee BJ, Hur YG, Kim DH, Lee SH, Lee KY, Fuel, 253, 449 (2019)
  8. Lee SH, Kang JK, Park ED, Korean J. Chem. Eng., 35(11), 2145 (2018)
  9. Gambo Y, Jalil AA, Triwahyono S, Abdulrasheed AA, J. Ind. Eng. Chem., 59, 218 (2018)
  10. Wu JG, Li SB, Niu JZ, Fang XP, Appl. Catal. A: Gen., 124(1), 9 (1995)
  11. Ji SF, Xiao TC, Li SB, Chou LJ, Zhang B, Xu CZ, Hou RL, York APE, Green MLH, J. Catal., 220(1), 47 (2003)
  12. Ji SF, Xiao TC, Li SB, Xu CZ, Hou RL, Coleman KS, Green MLH, Appl. Catal. A: Gen., 225(1-2), 271 (2002)
  13. Wang JX, Chou LJ, Zhang B, Song HL, Zhao J, Yang J, Li SB, J. Mol. Catal. A-Chem., 245(1-2), 272 (2006)
  14. Gordienko Y, Usmanov T, Bychkov V, Lomonosov V, Fattakhova Z, Tulenin Y, Shashkin D, Sinev M, Catal. Today, 278, 127 (2016)
  15. Chua YT, Mohamed AR, Bhatia S, Appl. Catal. A: Gen., 343(1-2), 142 (2008)
  16. Yunarti RT, Gu S, Choi JW, Jae J, Suh DJ, Ha JM, ACS Sustain. Chem. Eng., 5, 3667 (2017)
  17. Yan Q, Wang Y, Jin Y, Chen YJ, Catal. Lett., 13, 221 (1992)
  18. Malekzadeh A, Khodadadi A, Dalai A, Abedini M, J. Nat. Gas Chem., 16, 121 (2007)
  19. Lee SH, Yoon KJ, Korean J. Chem. Eng., 18(2), 228 (2001)
  20. Keller G, Bhasin M, J. Catal., 73, 9 (1982)
  21. Lee KY, Han YC, Suh DJ, Park TJ, Stud. Surf. Sci. Catal., 119, 385 (1998)
  22. Arndt S, Otremba T, Simon U, Yildiz M, Schubert H, Schomacker R, Appl. Catal. A: Gen., 425-426, 53 (2012)
  23. Elkins TW, Hagelin-Weaver HE, Appl. Catal. A: Gen., 497, 96 (2015)
  24. Uzunoglu C, Leba A, Yildirim R, Appl. Catal. A: Gen., 547, 22 (2017)
  25. Fang X, Li S, Lin J, Chu Y, J. Mol. Catal., 6, 427 (1992)
  26. Jiang C, Yu CJ, Fang XP, Li SB, Wang HL, J. Phys. Chem., 97, 12870 (1993)
  27. Gu S, Oh HS, Choi JW, Suh DJ, Jae J, Choi J, Ha JM, Appl. Catal. A: Gen., 562, 114 (2018)
  28. Park JH, Lee DW, Im SW, Lee YH, Suh DJ, Jun KW, Lee KY, Fuel, 94(1), 433 (2012)
  29. Kwon D, Yang I, Sim Y, Ha JM, Jung JC, Catal. Commun., 128, 105702 (2019)
  30. Lee KY, Houalla M, Hercules DM, Hall WK, J. Catal., 145(1), 223 (1994)
  31. Oh SC, Lei Y, Chen HY, Liu DX, Fuel, 191, 472 (2017)
  32. Kim I, Lee G, Na HB, Ha JM, Jung JC, Mol. Catal., 435, 13 (2017)
  33. Sugiyama S, Hayashi H, Int. J. Mod. Phys. B, 17, 1476 (2003)
  34. Suzuki K, Yumura T, Mizuguchi M, Taguchi T, Sato K, Tanaka J, Akashi M, J. Sol-Gel Sci. Technol., 21, 55 (2001)
  35. Li P, Kangasniemi I, De Groot K, Kokubo T, Yli-Urpo A, J. Non-Cryst. Solids, 168, 281 (1994)
  36. Palermo A, Vazquez JPH, Lee AF, Tikhov MS, Lambert RM, J. Catal., 177(2), 259 (1998)
  37. Elliott J, Structure Chemistry of the Apatites and Other Calcium Orthophosphates: Hydroxyapatite and Nonstoichiometric Apatites, 18, 111 (1994).
  38. Dominguez MI, Romero-Sarria F, Centeno MA, Odriozola JA, Appl. Catal. B: Environ., 87(3-4), 245 (2009)
  39. Galadima A, Muraza O, J. Ind. Eng. Chem., 37, 1 (2016)
  40. Takanabe K, Iglesia E, Angew. Chem.-Int. Edit., 120, 7803 (2008)