Applied Chemistry for Engineering, Vol.32, No.4, 478-482, August, 2021
Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 수소제조를 위한 메탄의 부분 산화 반응에서 Eu의 효과
Effect of Eu in Partial Oxidation of Methane to Hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) Catalysts
E-mail:
초록
고정층 상압 유통식 반응기를 사용하여 Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, Tb) 촉매상에서 메탄의 부분 산화 반응을 수행하여 수소의 수율을 조사하였다. X-ray photoelectron spectroscopy (XPS) 분석으로 Ni(5)/SBA-15 촉매에 1 wt%의 Eu를 첨가함으로써 Eu(1)-Ni(5)/SBA-15의 O1s와 Si2p의 핵심 전자 수준의 화학적 이동이 있었으며, O1s, Ni2p3/2, Si2p의 원자의 비가 1.284, 1.298, 1.058로 증가하였다. 촉매 표면상에 O-, O2-의 산소와 Eu3+, Ni0, Ni2+, Si4+의 이온이 존재함을 알 수 있었다. Eu(1)-Ni(5)/SBA-15 촉매상에서 수소의 수율은 57.2%이었으며, Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, Tb)보다 우수한 수소 수율을 보여주었고 25 h의 반응에서 안정된 촉매 활성을 유지하였다. Eu를 Ni(5)/SBA-15에 1wt%를 첨가 함으로서 금속과 담체 간에 강한 상호 작용에 의한 SMSI 효과로 산소 빈자리를 만들고 촉매 표면상에 Ni0, N2+의 나노 입자의 분산을 증가시켜 촉매 활성을 유지시켰다.
The catalytic yields of partial oxidation of methane (POM) to hydrogen over Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Eu, Pr, and Tb) were investigated in a fixed bed flow reactor under atmosphere. As 1 wt% of Eu was added to Ni(5)/SBA-15 catalyst, the O1s and Si2p core electron levels of Eu(1)-Ni(5)/SBA-15 showed the chemical shift by XPS. XPS analysis also demonstrated that the atomic ratio of O1s, Ni2p3/2, and Si2p increased to 1.284, 1.298, and 1.058, respectively, and exhibited O-, and O2- oxygen and metal ions such as Eu3+, Ni0, Ni2+, and Si4+ on the catalyst surface. The yield of hydrogen on the Eu(1)-Ni(5)/SBA-15 was 57.2%, which was better than that of Ln(1)-Ni(5)/SBA-15 (Ln = Dy, Pr, and Tb), the catalytic activity was kept steady even 25 h. As 1 wt% of Eu was added to Ni(5)/SBA-15, the oxygen vacancies caused by strong metal- support interaction (SMSI) effect due to the strong interaction between metals and carrier are made. They are resulted in increasing the dispersion of Ni0, and Ni2+ nano particles on the surface of catalyst, and are kept catalytic activity.
- Pan C, Guo ZL, Dai H, Ren R, Chu W, Int. J. Hydrog. Energy, 45(32), 16133 (2020)
- Sato S, Takahashi R, Kobune M, Gotoh H, Appl. Catal. A: Gen., 356(1), 57 (2009)
- Seo HJ, Appl. Chem. Eng., 30(6), 757 (2019)
- Liu DP, Quek XY, Cheo WNE, Lau R, Borgna A, Yang YH, J. Catal., 266(2), 380 (2009)
- Liu HC, Wang H, Shen JG, Sun Y, Liu ZM, Appl. Catal. A: Gen., 337(2), 138 (2008)
- Lopez JM, Gilbank AL, Garcia T, Solsona B, Agouram S, Murciano LT, Appl. Catal. B: Environ., 174-175, 403 (2015)
- Krcha MD, Mayernick AD, Janik MJ, J. Catal., 293, 103 (2012)
- Newnham J, Mantri K, Amin MH, Tardio J, Bhargava SK, Int. J. Hydrog. Energy, 37(2), 1454 (2012)
- Anjaneyulu C, Kumar SN, Kumar VV, Naresh G, Bhargava SK, Chary KVR, Venugopal A, Int. J. Hydrog. Energy, 40(9), 3633 (2015)