화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.4, 431-441, August, 2021
ZIF-8@GO를 함유한 PEBAX-PEI 복합막의 기체투과 특성
Gas Permeation Characteristics of PEBAX-PEI Composite Membranes Containing ZIF-8@GO
E-mail:
초록
본 연구에서는 PEBAX에 GO과 ZIF-8@GO의 함량을 달리하여 PEBAX/GO-PEI 복합막과 PEBAX/ZIF-8@GO-PEI 복합막을 제조하고, N2와 CO2의 투과 특성을 연구하였다. 전체적으로 PEBAX/GO-PEI 복합막의 N2와 CO2 투과도는 GO 함량이 증가할수록 감소하였고, CO2/N2 선택도는 약간 증가하였다. PEBAX/ZIF-8@GO-PEI 복합막에서도 N2의 투과도는 감소하였으나 CO2는 ZIF-8@GO 1 wt%까지 증가하였고, 그 이후의 함량에서는 감소하였다. CO2/N2 선택도는 ZIF-8@GO1 wt%에서 92.3으로 가장 높은 선택도를 보였는데 이는 PEBAX와의 호환성을 향상시켜 고르게 분산되면서 다공성의ZIF-8의 효과와 함께 CO2에 친화성이 좋은 GO, ZIF-8의 효과를 가장 크게 받았기 때문으로 생각된다. 또한 PEBAX/ZIF-8@GO-PEI 복합막은 ZIF-8@GO 5 wt%를 제외하고 PEBAX-PEI와 PEBAX/GO-PEI 복합막보다 CO2 투과도와 CO2/N2선택도가 모두 향상되면서 Robeson upper bound에 근접하는 결과를 얻었다.
In this study, PEBAX/GO-PEI and PEBAX/ZIF-8@GO-PEI composite membranes were prepared by varying the contents of GO and ZIF-8@GO in PEBAX, and also the gas permeation characteristics of N2 and CO2 was studied. Overall, the N2 and CO2 permeability of the PEBAX/GO-PEI composite membrane decreased as the GO content increased, and the CO2/N2 selectivity slightly increased. In the case of PEBAX/ZIF-8@GO-PEI composite membrane, the permeability of N2 decreased, but CO2 increased to 1 wt% of ZIF-8@GO and then decreased in the content thereafter. The CO2/N2 selectivity at 1 wt% of ZIF-8@GO was 92.3, showing the highest selectivity. This is thought to be due to the greatest effect of GO and ZIF-8 with good affinity for CO2 alongside the effect of porosity ZIF-8 while improving compatibility with PEBAX and dispersing evenly. In addition, PEBAX/ZIF-8@GO-PEI composite membrane improved both CO2 permeability and CO2/N2 selectivity than those of the PEBAX-PEI and PEBAX/GO-PEI membranes, except for ZIF-8@GO 5 wt%. The result was close to the Robeson upper bound.
  1. Li T, Pan Y, Peinemann KV, Lai Z, J. Membr. Sci., 425-426, 235 (2013)
  2. Noble RD, J. Membr. Sci., 378(1-2), 393 (2011)
  3. Shen Y, Lua AC, Chem. Eng. J., 192, 201 (2012)
  4. Murali RS, Ismail AF, Rahman MA, Sridhar S, Sep. Purif. Technol., 129, 1 (2014)
  5. Park JS, Rhim JW, Park BG, Kong SH, Nam SY, Membr. J., 15(3), 247 (2005)
  6. Ge L, Zhu ZH, Rudolph V, Sep. Purif. Technol., 78(1), 76 (2011)
  7. Akhtar FH, Kumar M, Peinemann KV, J. Membr. Sci., 525, 187 (2017)
  8. Shen J, Zhang MC, Liu GP, Guan KC, Jin WQ, AIChE J., 62(8), 2843 (2016)
  9. Karunakaran M, Shevate R, Kumar M, Peinemann KV, Chem. Commun., 51, 1418 (2015)
  10. Morimune S, Nishino T, Goto T, ACS Appl. Mater. Interfaces, 4(7), 3596 (2012)
  11. Dong L, Chen M, Li J, Shi D, Dong W, Li X, Bia Y, J. Membr. Sci., 502, 801 (2016)
  12. Casadei R, Baschetti MG, Yoo MJ, Park HB, Giorgini L, Membranes, 10, 188 (2020)
  13. Huang AS, Feng B, Int. J. Hydrog. Energy, 43(4), 2224 (2018)
  14. Liu FQ, Li W, Zhao J, Li WH, Chen DM, Sun LS, Wang L, Lia RX, J. Mater. Chem. A, 3(23), 12252 (2015)
  15. Huang D, Xin Q, Ni Y, Shuai Y, Wang S, Li Y, Ye H, Lin L, Ding X, Zhang Y, RSC Adv., 8, 6099 (2018)
  16. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM, Nature, 402, 276 (1999)
  17. Gong X, Wang Y, Kuang T, ACS Sustainable Chem. Eng., 5, 11204 (2017)
  18. Hayashi H, Cote AP, Furukawa H, O'Keeffe M, Yaghi OM, Nat. Mater., 6(7), 501 (2007)
  19. Pokhrel J, Bhoria N, Anastasiou S, Tsoufis T, Gournis D, Romanos G, Karanikolos GN, Microporous Mesoporous Mater., 267, 53 (2018)
  20. Chen BC, Wan C, Kang XT, Chen MQ, Zhang CF, Bai YX, Dong LL, Sep. Purif. Technol., 223, 113 (2019)
  21. Hu Y, Wei J, Liang Y, Zhang H, Zhang X, Shen W, Wang H, Angew. Chem.-Int. Edit., 55, 2048 (2016)
  22. Kumar R, Jayaramulu K, Maji TK, Rao CNR, Chem. Commun., 49, 4947 (2013)
  23. Kumar R, Jayaramulu K, Maji TK, Rao CNR, Dalton Trans., 43, 7383 (2014)
  24. Bian ZJ, Xu J, Zhang SP, Zhu XM, Liu HL, Hu J, Langmuir, 31(26), 7410 (2015)
  25. Qiu X, Wang X, Li YW, Chem. Commun., 51, 3874 (2015)
  26. Sridhar S, Suryamurali R, Smitha B, Aminabhavi TM, Colloids Surf. A: Physicochem. Eng. Asp., 297, 267 (2007)
  27. Liu L, Chakma A, Feng XS, J. Membr. Sci., 235(1-2), 43 (2004)
  28. Yi ES, Hong SR, Appl. Chem. Eng., 31(6), 679 (2020)
  29. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS nano, 4(8), 4806 (2010)
  30. Nordin NAHM, Ismail AF, Mustafa A, Goh PS, Rana D, Matsuura T, RSC Adv., 4, 33292 (2014)
  31. Zarshenas K, Raisi A, Aroujalian A, J. Membr. Sci., 510, 270 (2016)
  32. Khan IU, Othman MHD, Jilani A, Ismail AF, Hashim H, Jaafa J, Rahman MA, Rehman GU, Arab. J. Chem., 11, 1072 (2018)
  33. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339 (1958)
  34. Chen B, Zhu Y, Xia Y, RSC Adv., 5, 30464 (2015)
  35. Zhao D, Ren J, Qiu Y, Li H, Hua K, Li X, Deng M, J. Appl. Polym. Sci., 132, 42624 (2015)
  36. Pazani F, Aroujalian A, Polym. Test, 81, 106264 (2020)
  37. Liu D, Wu Y, Xia Q, Li Z, Xi H, Adsorption, 19, 25 (2013)
  38. Hwang SW, Chung YC, Chun BC, Lee SJ, Polymer, 28(5), 374 (2004)
  39. Nafisi V, Hagg MB, J. Membr. Sci., 459, 244 (2014)
  40. Robeson LM, J. Membr. Sci., 320(1-2), 390 (2008)