화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.101, 430-444, September, 2021
Machine learnings for CVD graphene analysis: From measurement to simulation of SEM images
E-mail:,
In this study, we introduce an approach that applies machine learning (ML) in various procedures to predict graphene growth pattern in chemical vapor deposition (CVD) system. At first, CVD experiments were conducted to synthesize graphene using CH4 as a precursor on a Cu substrate at high temperatures, to get experimental data for training those models. Then, the size, coverage, domain density, and aspect ratio of graphene, which vary depending on the synthesis conditions, were measured and analyzed automatically by developing a region proposal convolutional neural network (R-CNN). Subsequently, an artificial neural network (ANN) and a support vector machine (SVM) were used to develop surrogate models to deduce the correlation between CVD process variables and the measured specifications. Characteristic graphene grains with hexagonal morphology were created using a generative adversarial network (GAN) to imitate the CVD growth. Then, they were modified to have the same size and aspect ratio as the predicted values and placed to meet the predicted coverage and domain density. Finally, the pre-generated images were modified using Pix2pix to obtain the same outlook as the experimental SEM images. As a result, it was possible to simulate graphene synthesis under various CVD condition. Through numerous simulations in advance, we were able to identify the experiment condition to synthesize graphene with the desired morphologies of large grain size and low domain density. Developing a platform to predict a CVD system for the controlled synthesis of graphene allow us to synthesize the graphene with high efficiency, saving tremendous amounts of time and expenses.
  1. Smith JS, Isayev O, Roitberg AE, Chem. Sci., 8(4), 3192 (2017)
  2. Yousefi F, Karimi H, J. Ind. Eng. Chem., 19(2), 498 (2013)
  3. Shabanzadeh P, Yusof R, Shameli K, J. Ind. Eng. Chem., 24, 42 (2015)
  4. Wu S, Lambard G, Liu C, Yamada H, Yoshida R, Mol. Inform., 39(1-2), 1 (2020)
  5. Tshitoyan V, Dagdelen J, Weston L, Dunn A, Rong ZQ, Kononova O, Persson KA, Ceder G, Jain A, Nature, 571(7763), 95 (2019)
  6. Shin Y, Kim Z, Yu J, Kim G, Hwang S, J. Clean Prod., 232, 1418 (2019)
  7. Masoumi HRF, Basri M, Kassim A, Abdullah DK, Abdollahi Y, Gani SSA, Rezaee M, J. Ind. Eng. Chem., 20(4), 1973 (2014)
  8. Zhang J, Zhao J, Lu J, ACS Nano, 6(3), 2704 (2012)
  9. Ma T, Liu Z, Wen J, Gao Y, Ren X, Chen H, Jin C, Ma XL, Xu N, Cheng HM, Ren W, Nat. Commun., 8, 1 (2017)
  10. Duong DL, Han GH, Lee SM, Gunes F, Kim ES, Kim ST, Kim H, Ta QH, So KP, Yoon SJ, Chae SJ, Jo YW, Park MH, Chae SH, Lim SC, Choi JY, Lee YH, Nature, 490(7419), 235 (2012)
  11. Girshick R, Donahue J, Darrell D, Malik J, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014).
  12. Li P, Chen X, Shen S, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 2019.
  13. Shi K, Bao H, Ma N, Proceedings of the 13th International Conference on Computational Intelligence and Security (CIS) 2017, 2018-January, 2018.
  14. Shi J, Chang Y, Xu C, Khan F, Chen G, Li C, Comput. Chem. Eng., 135 (2020)
  15. Manee V, Zhu W, Romagnoli JA, Ind. Eng. Chem. Res., 58(51), 23175 (2019)
  16. Girshick R, Proceedings of the 2015 IEEE International Conference on Computer Vision, (2015).
  17. Ren S, He K, Girshick R, Sun J, IEEE Trans. Pattern Anal. Mach. Intell., 39(6), 1137 (2017)
  18. Momeni K, Ji Y, Zhang K, Robinson JA, Chen LQ, Npj 2D Mater. Appl., 2(1) (2018)
  19. Phys JA, Balachandran PV, 235303(December) (2020).
  20. Iakovlev VY, Krasnikov DV, Khabushev EM, Kolodiazhnaia JV, Nasibulin AG, Carbon N.Y., 153, 100 (2019)
  21. SATO Y, Jpn. J. Appl. Stat., 24(2), 77 (1995)
  22. Sollich P, Mach. Learn., 46(1-3), 21 (2002)
  23. Hira ZM, Gillies DF, Adv. Bioinf., 2015 (2015)
  24. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y, Adv. Neural Inf. Process. Syst. 3 (January), 2672 (2014).
  25. Kim S, Noh J, Gu GH, Aspuru-Guzik A, Jung Y, 1 (2020).
  26. Choi Y, et al., Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2018).
  27. Isola P, Zhu JY, Zhou T, Efros AA, Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, 2017.
  28. Shu H, Chen X, Tao X, Ding F, ACS Nano, 6(4), 3243 (2012)
  29. Alton WH, Nature, 162, 329 (1948)
  30. Gedraite ES, Hadad M, Proc. Elmar: Int. Symp. Electron. Mar. (September), 393 (2011).
  31. Ray S, Turi RH, Proceedings of the 4th International Conference on Advances in Pattern Recognition and Digital Techniques, p.137 (1999).
  32. Wang Q, 5 (5), (2012).
  33. Bottou L, 1(1), 421 (2012).
  34. He K, et al., Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, p.770, 2016.
  35. Smith LN, 1 (2018).
  36. Kim K, Ward L, He J, Krishna A, Agrawal A, Wolverton C, Phys. Rev. Mater., 2(12), 1 (2018)
  37. Ioffe S, Szegedy C, The 32nd International Conference on Machine Learning (ICML 2015), 1, p.448, (2015).
  38. Zitnick CL, Dollar P, Lecture Notes in Computer Science (Including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 8693 LNCS (PART 5), (2014).
  39. Rezatolhi H, et al., Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2019-June, 2019.
  40. Davis J, Goadrich M, ACM Int. Conf. Proc. Ser., 148, 233 (2006)
  41. Asuero AG, Sayago A, Gonzalez AG, Crit. Rev. Anal. Chem., 36(1), 41 (2006)
  42. Foresee FD, Hagan MT, Network, 1930 (1930).
  43. Jasper, Cambridge Companion to Saul Bellow, pp.159, (2016).
  44. Ng AY, Proceedings of the 21st International Conference on Machine Learning, (2004).
  45. Law T, Shawe-Taylor J, Quant. Financ., 17(9), 1403 (2017)
  46. Kingma DP, Ba JL, 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, p.1 (2015).
  47. Kim H, Mattevi C, Calvo MR, Oberg JC, Artiglia L, Agnoli S, Hirjibehedin CF, Chhowalla M, Saiz E, ACS Nano, 6(4), 3614 (2012)
  48. Liu CW, Wang YL, Tsai MS, Feng HP, Chang SC, Hwang GJ, J. Vac. Sci. Technol. A, 23(4), 658 (2005)
  49. Trinsoutrot P, Rabot C, Vergnes H, Delamoreanu A, Zenasni A, Caussat B, Surf. Coat. Technol., 230, 87 (2013)
  50. Jin S, Huang M, Kwon Y, Zhang LN, Li BW, Oh S, Dong JC, Luo D, Biswal M, Cunning BV, Bakharev PV, Moon I, Yoo WJ, Camacho-Mojica DC, Kim YJ, Lee SH, Wang B, Seong WK, Saxena M, Ding F, Shin HJ, Ruoff RS, Science, 362(6418), 1021 (2018)
  51. Robinson ZR, Tyagi P, Murray TM, Ventrice CA, Chen S, Munson A, Magnuson CM, Ruoff RS, J. Vac. Sci. Technol. A, 30(1), 011401 (2012)
  52. Wang H, Wang G, Bao P, Yang S, Zhu W, Xie X, Zhang WJ, J. Am. Chem. Soc., 3627 2012).
  53. Kim SM, Hsu A, Lee YH, Dresselhaus M, Palacios T, Kim KK, Kong J, Nanotechnology, 24(36) (2013)
  54. Deng K, Phd Thesis, (1999).
  55. Jacobberger RM, Arnold MS, Chem. Mater., 25(6), 871 (2013)
  56. Eres G, Regmi M, Rouleau CM, Chen J, Ivanov IN, Puretzky AA, Geohegan DB, ACS Nano, 8, 5657 (2014)
  57. Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, et al., Sci. Bull., 62(15), 1074 (2017)
  58. Tan YW, Stormer HL, Kim P, Novoselov KS, Cohen ML, Louie SG, Wang X, et al., Science, 323, 1705 (2009)
  59. Koo J, Seo J, Jeon S, Choe J, Jeon T, GIS Proc. ACM Int. Symp. Adv. Geogr. Inf. Syst., 420 (2018).
  60. Gupta A, Sakthivel T, Seal S, Prog. Mater. Sci., 73, 44 (2015)
  61. Mas-Balleste R, Gomez-Navarro C, Gomez-Herrero J, Zamora F, Nanoscale, 3(1), 20 (2011)